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Abstract. The numerical solution of the time dependent wave equation
in an unbounded domain generally leads to a truncation of this domain,
which requires the introduction of an artificial boundary with associated
boundary conditions. Such nonreflecting conditions ensure the equiva-
lence between the solution of the original problem in the unbounded
region and the solution inside the artificial boundary. We consider the
acoustic wave equation and derive exact transparent boundary conditions
that are local in time and can be directly used in explicit methods. These
conditions annihilate wave harmonics up to a given order on a spherical
artificial boundary, and we show how to combine the derived boundary
condition with a finite difference method. The analysis is complemented
by a numerical example in two spatial dimensions that illustrates the
usefulness and accuracy of transparent boundary conditions.

1 Introduction

Modern trends in the development of numerical methods lead to higher and
higher requirements for computational accuracy. The numerical solution of the
wave equation on unbounded domains requires a truncation to fit the infinite
region on a finite computer. Minimizing the amount of spurious reflections re-
quires in many cases the introduction of an artificial boundary and of associated
boundary conditions. The critical importance of these techniques becomes par-
ticularly evident when one considers that the gains made in the computational
domain by using sophisticated high-order numerical approaches may vanish to
a large extent as result of violating the conditions at the artificial boundary.
Despite the computational speed of finite difference schemes and the robust-
ness of finite elements in handling complex geometries the resulting numerical
error consists of two independent contributions: the discretization error of the
numerical method used and the spurious reflection generated at the artificial
boundary. This spurious contribution travels back and substantially degrades
the accuracy of the solution everywhere in the computational domain. Unless
both error components are reduced systematically, the numerical solution does
not converge to the solution of the original problem in the infinite region.
There are various techniques for the approximate handling of boundary con-
ditions at the external boundary of a finite domain constructed from the original



unbounded domain by means of truncation. One class of conditions is given by
local differential operators [2], [3], including conditions that perfectly annihilate
impinging waves at a finite number of selected angles of incidence [4], whilst a
different approach is based on absorbing layers [5]. There are cases, where some
of the difficulties with boundary conditions may be avoided partially by using a
momentum space approach [6]. In contrast to grid methods in coordinate space
where continuum waves spread over the entire space, in momentum space the
waves are confined to a small finite volume and the dynamics stays localized
around the origin at all times.

Exact nonreflecting boundary conditions that are nonlocal in both space and
time have been investigated numerically in [7]. Numerical methods based on
these exact conditions display a long-time instability, and a major disadvantage
is related to the nonlocal character of the boundary condition in time. Due to
the temporal nonlocality that requires information from previous time steps,
these methods require a considerably longer computational time than explicit
schemes for the wave equation. Recently, very important progress has been made
by Grote and Keller [8] by deriving exact nonreflecting boundary conditions that
are local in time.

In the present work we study exact transparent boundary conditions that
are local in time for the scalar wave equation for the general case in two and
three spatial dimensions. In contrast to [8] where an integral equation is used,
our approach is based on the separation of variables combined with recurrence
relations that provide a very direct derivation of the boundary condition. Since
the derived condition is local in time and is equivalent to the result obtained
in [8], our formulation complements the integral transform approach and is ex-
pected to have applications to cases where the latter method is difficult to apply.

The local character in time of the boundary condition and its explicit rep-
resentation that requires only first order derivatives of the solution makes it
relatively easy to apply in calculations based on explicit schemes. In contrast
to earlier studies based on exact but nonlocal boundary conditions, the present
finite differences implementation does not require a significant increase in the
computational time. This highlights a key point in practical applications of such
conditions in that the related implementations should not become computation-
ally too expensive. In Sec. 2, we illustrate the fundamental ideas underlying the
derivation of nonreflecting boundary conditions for the one-dimensional case and
present the extension to higher dimensions. In Sec. 3 we discuss the implementa-
tion in a finite differences scheme and present a simple two dimensional numerical
example that illustrates the usefulness of transparent boundary conditions. The
conclusions of the present study are given in Sec. 4.

2 Theoretical Approach

2.1 The One-Dimensional Wave Equation

We consider the one-dimensional wave equation describing the propagation of
perturbations along the positive real axis (x > 0,¢ > 0) with velocity ¢ = 1 that



are induced by a general and possibly nonlinear forcing term f = f(z,t,®,0,P)

@0 - 07) o(=t) = [, (1)

where &(z,t) represents the displacement of an infinitely long string and 9; =
0/0t. Upon requiring ®(0,t) = 0 for the state at rest we assume P(x,t) to
describe the position of a string fixed at the origin. We define the initial con-
ditions by the string position and velocity at ¢ = 0 by &(z,0) = U, and
0:®(x,t) |,—y = Vo.

The local character of the problem is defined by assuming f = 0 for >
L, ¥V t > 0. Thus, the positive z-axis separates into two distinctly different
regions: the bounded (interior) domain 2 < L, and the unbounded (exterior)
region x > L where the forcing term f vanishes. The two regions are separated
by the artificial boundary at © = L.
To find the exact absorbing boundary condition at x = L it is useful to separate
outgoing from incoming waves by defining

v = P+ 0,9, and w = P — 0,D . (2)

Since @(x,t) is a solution of Eq. (1) for x > L, i.e. (0? —92)® = 0, in the exterior
region from (2)
0 = (0 — 02)[(0r + 02)P] = (0 — Ox)v,

(3)
0 = (& + 3)[(8 — 0)8] = (8 + dp)w.

This system of first-order equations has the general solution
v(x,t) = Yz +t), and w(z,t) = plxz—1t) , (4)

where 1 and ¢ are arbitrary functions that are determined by initial and bound-
ary conditions. Thus, incoming (v) and outgoing (w) waves are defined as

v(z,t) = const.,, for * + t = const. (incoming)

()

w(z,t) = const., for + — ¢t = const. (outgoing)

Since there are no incoming waves in the exterior region, it follows v(L,t) = 0.
The requirement of a purely outgoing wave for x > L combined with the defini-
tion for incoming waves v from eq. (2) yields the exact nonreflecting boundary
condition for the displacement ®(z,t)

(0 + 0.)P(x,t) |, = 0. (6)

This expression which is local in time guarantees that the artificial boundary
at x = L is perfectly transparent to both incoming and outgoing waves as they
leave the interior region without any spurious reflection. Note that since the
derivation of the exact boundary condition (6) depends solely on properties in
the exterior domain, x > L, the problem inside the computational volume can
be arbitrarily complex.



2.2 Transparent Boundary Conditions in Higher Dimensions

The derivation of exact absorbing boundary conditions in higher dimensions is
considerably more challenging as compared to the one dimensional case discussed
previously. Distinctly different from the one-dimensional case where waves can
propagate in two directions only, in two and more dimensions waves propagate
in infinitely many directions.

In the following we consider wave propagation in an unbounded region IR®
and surround the computational region 2 containing the forcing term f by an
artificial boundary S that is assumed to be the surface of a sphere with radius
R. In the exterior domain one has f = 0, and the wave function ) (r,t) satisfies
the homogeneous wave equation with propagation velocity ¢ > 0, i.e.

(clgag - A) Y(r,t) = 0 in R\ 2 (7)

with initial conditions ¥ (r,0) = 0 and 9y (r,0) = 0. It is useful to separate the
variables by expanding the solution in spherical coordinates r, 9, ¢

l

w(r’t) = Z Z wl,m(r’t)yl,m(ﬂ:@) ’ (8)

=0 m=-—1
where the spherical harmonics
2L+ 1D = [mD! Sm ;
Yim (9, = P, s19) e'™F 9
l ( 90) \/ 47T(l + |m|)' l (COb )6 ()

are orthonormal and the functions Pl‘m‘ are Legendre polynomials. Using the or-
thonormality properties of the Y} ,,, the radial time-dependent functions ; ., (7, t)
may be written as

T 2
Gm(ryt) = / a9 sin 0 / do Vi (0, 0) b(r.0,0.0) . (10)
0 0

By inserting expression (8) in eq. (7) one obtains the radial equation

L%af _ o %@ n I(1+1)

r2

]M,m(ﬂt) = 0, (11)

with the initial conditions ¢, (r,0) = 0 and 9¢¥;m (r,0) = 0. The differential
operator in the square brackets which we denote by R;, satisfies a remarkable
commutation-like relation R; [0, — (I —1)/r] = [0, — (I —1)/r] Rj_1, or

-1 -1
Ry <6r - T) Gr-1(r,t) = <3r - T) Ri_1¢ra(r,t) =0, (12)
whenever R;_1 ¢;—1 = 0. Thus, one obtains a solution of the I-th order equation

R; ¢; =0 from a (I — 1)th order solution according to the recurrence relation

Il -1
T

bilrt) = [ar - M_l(r,t) , (13)



that can be also obtained by use of properties of spherical Bessel functions [10].
Recursive use of (13) yields a representation for the radial functions v .,

S | I

where ¢; ,,, is a solution to the | = 0 version of eq. (11). It follows that the
modified radial function @; ., (r,t) = r¢;,, satisfies a simple one-dimensional
wave equation, i.e.

} Prm (14)

1
<§a§ - af) Dy m(r,t) = 0 . (15)

As shown in Sec. 2.1, a general solution for outgoing waves is written as @(r—ct),
such that for [ > 1 the radial functions v, are expressed as

l

wl,m(rat) = H (ar - il) %él,m(r —ct) , (16)

- T
=1

where the index denotes a radial wave function of order [. Recursive use of this
relations enables one after some rearrangement to rewrite the I-th order radial
function as a sum over [, i.e.

l (7)1 9l—i
¢l,m(T7 t) = Z it Pl Hri—i GZi’l,m(r — ct)
i=0
l 1 al—i
= (_)l Z Cl z,,,i—&-l Pl 6tl i @lm( — Ct) 5 (17)

=0

where p;; = (I +)!/[2%i! (I — i)!]. These coefficients can be obtained by using
induction in eq. (17) to obtain recurrence relations for p; ;, and we replaced the
spatial derivative with a time derivative using

oF 1 9
(— )’“ak@lm( —ct) = gl Dy (1 — ct) . (18)

In analogy with ref. [8] we now replace the radial derivative with a time derivative
by applying the operator By on the radial function

(_)l+1

=

l . 1—i
P 0
By thim = [a - 6t - }wlm: chl T g Com(r — @t),(19)
where we used eq. (17). Finally, using expansion (8) and multiplying the last
expression by Y}, with summation over | and m, we obtain

l l—1
ip; O
Bi (R, 9, p,t) = ——ZYlmﬁ@ Zc(l sz+11 o= um(R = ct) (20)

i=1




In the general case, the functions @; ,,, are obtained by evaluating Eq. (17) at
r = R. Since p;p = 1 this leads to the solution of a linear differential equation

l

1d - Pli = -
aa Dym(t) = —; g gl Dy (R — ct) + Yym(R,T), (21)
where we have substituted q'~517m = (-)!®;,n/R and the inhomogeneous term

Y1,m(R,1) is given by Eq. (10) evaluated at r = R.

Expression (20) represents the exact nonreflecting boundary condition in the
form obtained in [8] where integral transforms formed the basis of the approach.
Note that in practical calculations truncation of the summation over [ at a finite
value I = L leads to an exact representation of modes with [ < L. Thus, the
boundary condition reduces to Bi9|,—g = 0 for harmonic modes with I’ >
L. In particular, B1¢|,—r = 0 is an exact boundary condition for spherically
symmetric modes (I = 0).

3 Numerical Results using Finite Differences

Using the results of the previous section, we illustrate the use of transparent
boundary conditions and their numerical implementation using a finite difference
formulation. The wave equation is discretized both in space and time using
centred finite differences. At time t = k At, we denote by ¥*(n) the numerical
approximation to the time dependent wave function ¢ (r,t) and by f¥(n) the
forcing term at the n-th grid point 7, in radial direction [8]. The numerical
solution is advanced in time using

Q/k"'l(n) = ZLT/k(n) — Wk_l(n) + (At)2 [Dwk(n) + fk(n)] , (22)

where D represents a finite difference approximation to the Laplace operator A.

An apparent complication occurs when the Laplace operator is to be calcu-
lated at the outer most radial grid point, r, = R, since this calculation uses
values of W¥(n + 1) belonging to the exterior region. However this problem can
be solved by using the explicit representation of the derived boundary condi-
tion. More precisely, one obtains an additional relation between the quantities
wFtl(n) and ¥*(n + 1) by using a finite difference representation of the bound-
ary condition equation (20) at r,, = R. Consequently, the problem is solved by
coupling the two equations for ¥**1(n) and ¥*(n + 1), allowing one to solve for
Wk +1(n). Due to the local character in time of the boundary condition, both the
differential equation and the boundary condition are discretized in time about
t = ti, and only function values at t = t; are needed in a given time step [8].

This procedure becomes particularly simple and is best illustrated using a
cartesian grid x, = nAz in one dimension. The second space derivative 9?2 is
written as

UF(n+1) — 20k (n) +¥*(n—1)
(Az)? ’

DUk (n) = (23)



and using the finite difference representation of the boundary condition we arrive
after some algebra at

vEn4+1) = —==— [U*(n) - )] + TFm-1) , (24)

which represents the additional equation for ¥*+1(n). By combining the two
equations for ¥**1(n) and ¥*(n + 1) one finds

20k (n) + (a— 1P F1(n) + 202 [W’“(n—l) — W’“(n)}
1+«

7 (n) (25)

where o« = ¢At/Ax. This expression clearly shows that the evaluation of the time
extrapolated function ¥*+1(n) at the boundary does not depend on function
values located outside the computational domain.

Using the approach described above we are now in a position to analyse
the time evolution of perturbations using transparent boundary conditions. In
Figures 1 and 2 we display snapshots of the two-dimensional wave function at
different times for ¢ = 82,128,270, 450, and 900, respectively. The contour plots
on the right hand side of the figures display the position of time evolved waves
in the zy-plane, where the computational domain extends from an inner radius
r< = 1000 km to the outer radius r~ = 6371 km, and we used At = 2.5 s,
dr ~ 3.5 km, and ¢ = 5 kmm/s. The plots on the left show the dependence of the
associated wave function on the radial coordinate r. While the starting point
of the calculation is ¢t = 0, the perturbing source is assumed to be proportional
to a Gaussian exp(t — tg)? and is located on a circle with r¢ ~ 4700 km. This
may be associated with an explosive point source that is located at the origin
r< =19 — 0 in the far past. For ¢ = 82 we observe a strong peak located in the
vicinity of the source. In the contour plot on the right hand side, one sees that
the wave is located in the area between the two bright circles.

For larger times, at t = 128, the wave separates in two independent contribu-
tions propagating in opposite directions along the radial coordinate . While one
of the waves moves outwards towards increasing r-values the other wave prop-
agates inwards, as indicated by the two arrows in the left figure. Note that the
amplitude decreases in magnitude with increasing r-values as a result of larger
surface elements 7 dr dp. At t = 270, it is seen that only the ingoing wave can
be found inside the computational region as the outgoing one passes the artifi-
cial boundary ar r = R without any reflection. On the other hand, the ingoing
wave propagating towards smaller r-values changes its sign and the direction of
propagation after encountering the margin r~ of the inner circle. As a result, for
larger times (¢t = 450) this wave propagates towards the margin of the compu-
tational domain but with opposite sign. Finally, for even larger times this wave
passes the artificial boundary at » = R without any reflection. Thus, for ¢ = 900
the computational region is seen to be completely unperturbed and, as a result
of the boundary condition, the artificial boundary appears perfectly transparent
to the wave as there is no spurious reflection.
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Fig. 1. Snapshots of the time evolved wave function obtained by the numerical solution
of the wave equation incorporating the nonreflecting boundary condition for ¢ = 82, 128,
and t = 270. The initial wave separates in two parts propagating in opposite directions.
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Fig. 2. The same as in Fig. 1 for larger times ¢ = 450, and 900. At large asymp-
totic times both components leave the computational domain and no reflection at the
artificial boundary is observed.
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4 Concluding Remarks

We investigate exact nonreflecting boundary conditions that are local in time for
the acoustic wave equation in two and three dimensions. The present approach
is based on a separation of variables combined with recurrence relations that
provide a very direct derivation of the boundary condition. This formulation
can be expected to have applications to situations where other methods are
difficult to apply or even impracticable. By adopting an alternative point of
view for attacking such problems, the present methodology complements the
integral transform approach, thus extending and enhancing the strength of the
theory for deriving exact nonreflecting boundary conditions.

The derived boundary condition requires only first order derivatives of the
solution which makes it relatively easy to use in explicit schemes. Using finite dif-
ferences the time extrapolation of the solution and the calculation of the spatial
derivatives require unknown function values that lie outside the computational
domain. This apparent complication is solved, and by using a simple numerical
example in two dimensions we show how these exterior values can be eliminated.

Finally, we emphasize that the derivation of the boundary condition depends
only on the behaviour in the exterior domain, such that the problem inside the
computational region can be arbitrarily complex, e.g. nonlinear. Furthermore,
as there is no unphysical reflection at the artificial boundary associated with
the computational region, the derived condition ensures perfect transparency
that leads to a long-time stability of the numerical scheme. After this work was
completed we learned about a similar approach used in [9].
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