
Apparent Strain Localization and Shear Wave 
Dispersion in Elastic Fault Gouge with Microrotations 

E. Pasternak1,2, H.-B. Mühlhaus3 and A.V. Dyskin1 

1 School of Civil and Resource Engineering, The University of Western Australia, 35 
Stirling Highway, Crawley, WA, 6009, Australia, E-mail: elena@civil.uwa.edu.au 
2 Institut für Werkstoffkunde und Werkstofftechnik, Technische Universität Clausthal 

Agricolastr. 6, D-38678, Clausthal-Zellerfeld, Germany 
3 CSIRO Division of Exploration and Mining, Australian Resource Research Centre, PoBox 
1130, Bentley, WA 6102, Australia and Department of Earth Sciences, The University of 

Queensland, St Lucia, QLD 4072, Australia, E-mail: hans.muhlhaus@csiro.au  

ABSTRACT Shear deformation of fault gouge or other particulate materials 
often results in observed strain localization, or more precisely, the localization 
of measured deformation gradients. In conventional elastic materials the strain 
localization cannot take place therefore this phenomenon is attributed to special 
types of non-elastic constitutive behaviour. For particulate materials however 
the Cosserat continuum which takes care of microrotations independent of 
displacements is a more appropriate model. In elastic Cosserat continuum the 
localization in displacement gradients is possible under some combinations of 
the generalized Cosserat elastic moduli. The same combinations of parameters 
also correspond to a considerable dispersion in shear wave propagation which 
can be used for independent experimental verification of the proposed 
mechanism of apparent strain localization in fault gouge.   

1. Introduction 

Strain localization under shear loading is often observed in granulate materials such 
as the material of fault gouge. If however one models a fault gouge as a homogeneous 
elastic layer of thickness 2h, occupying the strip –h<x2<h in a Cartesian coordinate 
frame (x1x2x3) with specified displacement at the boundaries u1(x1,±h,x3)=±u1

0, 
u2(x1,±h,x3)= u3(x1,±h,x3)=0, then the shear strain and stress will be uniform i.e. 
ε12=u1

0/2h, σ12=µu1
0/h, where µ is the shear modulus of the gouge. Thus the strain 

localization is perceived as a manifestation of material instability which can only be 
achieved under either large deformations or certain inelastic constitutive laws, such as 
non-associated plasticity (eg, [1]) or post-peak softening. This seems to be the only 
way to theoretically reproduce the phenomenon of strain localization in the frame of 
continuum mechanics without resorting to direct computer simulations of granular 
flow in the gouge (eg, [2, 3]). 



  

An important feature of granulate materials overlooked by the conventional 
continuum mechanics is the presence of microrotations arising from the ability of 
particles to rotate independently, i.e. not in a chord with the rotations associated with 
the displacement field. An important feature of Cosserat continuum is that strain and 
displacement gradient differ. Observations of localization usually refer to the 
measurements of displacement gradients. In the present paper we show that in a 
Cosserat continuum localization of the displacement gradient can be observed even 
for elastic gouge. We show that the combinations of parameters producing the 
localization also lead to dispersion in shear wave propagation. 

2. Three-Dimensional Continuum Elastic Model of Granulate 
Materials 

Cosserat continuum models of a particulate material can be obtained by 
homogenisation of discrete equations of motion of the particles. Mühlhaus and Oka 
[4] suggested a continuum model for assemblies of identical spheres without 
resistance to relative rotations. The equations of motion were homogenised by 
expanding the difference expressions of the discrete model into Taylor series and 
retaining terms up to the second order. Since rotational degrees of freedom were 
introduced and higher order terms kept in the corresponding Taylor expansions, the 
resulted continuum description was a combination of a Cosserat theory and a strain 
gradient theory. An analysis of simple 1D particle arrangements ([5, 6]) showed that 
the resistance to relative rotations at particle contacts is important: its neglect leads to 
the loss of positive definiteness of the energy [4]. In the following we consider the 
resistance of the spheres to relative rotations at the contact points (see also [7]). The 
non-symmetry of the stress can then be balanced by moment stresses caused by 
relative rotations at the contacts alone. 

We consider a three-dimensional assembly of identical spherical grains. The 
diameter D of the grain is assumed as much smaller than the problem dimension L, so 
that D<<L. The spheres are in permanent contact; and the orientation of the contact 
points is assumed as random. In our idealised model, every point of the equivalent 
continuum corresponds to the centroid of the reference sphere in the discrete material. 

Interaction between each pair of neighbouring particles is represented by the total 
contact force F

r
and contact moment M

r
. The contact moment reflects the fact that 

the real particles are neither absolutely rigid nor perfectly spherical and hence contact 
over a certain area. Then the relative rotation of one particle with respect to the other 
results in a non-symmetric distribution of contact forces, which in the first 
approximation can be described by the contact moment. It is supposed that the contact 
force and the moment are linearly dependent upon the relative displacement ur∆  and 
rotation ϕ∆

r
 between the neighbouring particles respectively: 

uKF rr
∆= ,   ϕ∆=

rr
LM , (1) 



  

[ ]ijKK = , ( ) ijsjisnij knnkkK δ+−= , [ ]ijLL = ,  

( ) ijsjisnij knnkkL δ+−= ϕϕϕ . (2) 

Here K and L are the matrixes of the translational and rotational spring stiffnesses, 

nk , sk  and 
n

kϕ , 
s

kϕ  are the normal and shear (tangential) contact stiffnesses of the 

translational and rotational springs and the indices in (2) refer to a spatially fixed 
Cartesian coordinate system. 

Assuming that the particle arrangements are statistically homogeneous and 
applying the method of homogenisation by differential expansions [6] one obtains the 
following state and constitutive equations  

ijji u&&ρ=σ , ,   ijkijkjji
D

ϕρ=σε+µ &&
10

2

, . (3) 

liljlmijlmji CC γ+γ=σ ,   liljlmijlmji DD κ+κ=µ , (4) 

Here σij and µij are non-symmetric stresses and moment stresses respectively, γij, κij 
are the classical Cosserat continuum deformation measures (eg, [8]) 

kkjijiji u ϕε−=γ , ,   jiji ,ϕ=κ , (5) 

where iϕ  is the Cosserat rotation, jiγ  and jiκ  are strains and curvature twists.  
The parameters of the constitutive relationships (4), the elastic moduli Cijlm, Clj, 

Dijlm, Dlj have the form 
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Here π= 4),( knrA rr
 for isotropic distribution of particle contacts, α is the 

spherical angle, dn=sinθdθdφ in a spherical coordinate frame with the origin at the 
sphere centre (r,φ,θ). 



  

3. Simple Shear of Elastic Gouge with Microrotations 

We consider a model of fault gouge as an infinite Cosserat elastic layer occupying the 
area |x1|<∞ , |x2|<h under plain strain conditions (Fig. 1) subjected to the following 
boundary conditions: 

u1(x1,±h,x3)=±u1
0, u2(x1,±h,x3)=0, ϕ3(x1,±h,x3)=0. (8) 

The Cosserat continuum Lamé equations for the plain strain with no body forces 
and moments can be obtained by substituting (4), (5) into (3): 

(2µ+λ)∂2u1/∂x1
2+λ∂2u2/∂x1∂x2+(µ+α)∂2u1/∂x2

2+(µ-α)∂2u2/∂x1∂x2+2α∂ϕ3/∂x2=0,
 (9) 

(µ+α)∂2u2/∂x1
2+(µ-α)∂2u1/∂x1∂x2+(2µ+λ)∂2u2/∂x2

2+λ∂2u1/∂x1∂x2-2α∂ϕ3/∂x1=0,
 (10) 

B(∂2ϕ3/∂x1
2+∂2ϕ3/∂x2

2)+2α(∂u2/∂x1-∂u1/∂x2-2ϕ3)=0, (11) 

where λ and µ are Lamé coefficients, α and B are the Cosserat elastic moduli, the 
latter is bending stiffness. The Lamé coefficients λ, µ and the Cosserat parameters α 
and B can be expressed through the micromechanical Cosserat model parameters, 
namely the solid volume fraction νs, coordination number k, the sphere diameter D 
and respective contact stiffnesses kn, ks, kϕn, kϕs introduced in the previous section. 
This can be achieved by comparing micromechanical Cosserat elastic moduli (6), (7) 
in the constitutive equations (4) with corresponding terms in continuum Cosserat 
theory taken, for example from [8] that reads 

σ11=(2µ+λ)γ11+λγ22, σ12=(µ+α)γ12+(µ-α)γ21, σ21=(µ+α)γ21+(µ-α)γ12, 
σ22=λγ11+(2µ+λ)γ22, (12) 

µ13=Bκ13, µ23=Bκ23, (13) 

where the Cosserat deformation measures, strains γji and curvatures κji, are given by 
(5). 
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Fig. 1. A 2D model of fault with an elastic gouge with microrotations. 

 
 

By doing so one obtains 

λ=νsk(kn-ks)/(5πD), µ=νsk(2kn+3ks)/(10πD), α=νskks/(2πD), 
B=νsk(kϕn+4kϕs)/(5πD). (14) 

Noting that the boundary conditions (8) are homogeneous along x1, we are seeking 
a homogeneous along x1 solution of the system of the Lamé equations (9)-(11) 
satisfying these boundary conditions. If we find such a solution according to the 
uniqueness theorem this solution will be unique. 

Such a solution can be written in the normalized form (h=1, u1
0=1) as follows: 
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where 

Λ=l1/l,   l=(l1
2+l2

2)1/2,   l1=(B/4µ)1/2,   l2=(B/4α)1/2. (17) 

Parameters l1 and l2 are two independent length scale parameters (normalized by h) 
reflecting the presence of a microstructure in the Cosserat continuum, with l acting as 
a “hypotenuse” of the Cosserat continuum length scale parameters. Their expressions 
through the microstructural parameters by using (14) can be written as follows: 
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Consequently, after further normalisation (µ=1) of stress and moment stress fields 
one obtains: 

1222
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l
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Figs. 2-4 show the distributions of displacement and displacement gradient for 
various ratios of microstructural parameters Λ, l. The displacements (Fig. 2) lie 
between the one for the standard elastic solution (Λ=0, l=0), and the Cosserat solution 
(Λ=1, l=1) that exhibits maximum deviation from the standard continuum solution. 
The displacement gradient for relatively small values of the parameter l (Fig. 3) 
exhibits a kind of plateau, which is insensitive to the values of the dimensionless 
parameter 0<Λ<1. There is however a range of parameters Λ and l, for which the 
displacement gradient is highly non-homogeneous and displays localisation reaching 
its peak for the combination of parameters Λ=1, l=1 (Fig. 4). Indeed, as the 
displacement gradient u1,2 reaches its maximum at x2=0 for any values of Λ, l, the 
parametric analysis of the solution performed for the middle layer of the gouge 

12
2

02,1 ))/1tanh(1(
)/1cosh(

1),(
2

−
= Λ−







 Λ
−=Λ ll

l
lu x  (21) 

shows that displacement gradient takes its max at Λ=1, l=1. This combination of 
parameters corresponds to l2=0, l1=l. This means that the bending stiffness 
B<<(µ+α)l2 the quantity in brackets being the effective shear modulus. 

Figs. 5, 6 show the distributions of normalized moment stress µ23 and 
antisymmetric σ[21] and symmetric σ(21) parts of the shear stress. It is seen that the 
maximum values of the moment stress and the antisymmetric shear stress are attained 
at the gouge boundaries, while the maximum (localization) of the symmetric stress is 
achieved at the middle layer of the gouge the latter being in accordance with the 
localization of the displacement gradient.  
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Fig. 2. Displacement distribution for various ratios of microstructural parameters Λ, l. Curve 1 
corresponds to the pair of parameters (Λ=0.8, l=0.5), Curve 2-(Λ=1, l=1), Curve 3-standard 
(conventional) elastic solution (Λ=0, l=0). 
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Fig. 3. Distribution of displacement gradients for small value of the parameter l and various 
values of microstructural parameter Λ. Curve 1 corresponds to the pair of parameters (Λ=0.1, 
l=0.1), Curve 2-(Λ=0.5, l=0.1), Curve 3-(Λ=0.9, l=0.1), Curve 4-standard (conventional) elastic 
solution (Λ=0, l=0). 
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Fig. 4. Distribution of displacement gradients for large values of the parameter l and various 
values of microstructural parameter Λ. Curve 1 corresponds to the pair of parameters (Λ=0.5, 
l=0.5), Curve 2-(Λ=0.7, l=0.5), Curve 3-(Λ=0.9, l=0.5), Curve 4-(Λ=1, l=1), Curve 5-standard 
(conventional) elastic solution (Λ=0, l=0). 
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Fig. 5. Distribution of normalized moment stress for various values of the parameters l and Λ. 
Curve 1 corresponds to the pair of parameters (Λ=0.1, l=0.1), Curve 2-(Λ=0.5, l=0.1), Curve 3-
(Λ=0.9, l=0.1), Curve 4-(Λ=0.9, l=0.5), Curve 5-(Λ=1, l=1). 
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Fig. 6. Distribution of antisymmetric (a) and symmetric (b) parts of the shear stresses for 
various values of the parameters l and Λ. Curves 1 corresponds to the pair of parameters 
(Λ=0.1, l=0.1), Curves 2-(Λ=0.5, l=0.1), Curves 3-(Λ=0.9, l=0.1), Curves 4-(Λ=0.9, l=0.5), 
Curve 5- standard (conventional) elastic solution (Λ=0, l=0). 

4. On the Possibility of Determining the Localization Regime from 
Wave Velocity Measurements 

Prior determination of whether the fault gouge can show localization requires the 
measurements of calculations of the Cosserat parameters, which is somewhat 
involved. It would be attractive to use the measurements of velocities of wave 
propagation through the gouge material for this purpose.  

Consider propagation of planar waves in an infinite Cosserat material. According 
to [8] there are the following types of planar waves: (1) a conventional longitudinal 
wave, which is insensitive to the microrotations; (2) a twist wave which reflects the 
Cosserat properties of the material, but difficult to measure and; (3) one or two 
(depending upon frequency) shear waves. These shear waves show dispersion which 
is a result of the Cosserat properties and could therefore be used for identifying 
possible localization. The wave number ξ for these shear waves satisfies the following 
characteristic equation (eg, [8]) 

( )[ ] ( ) 022222
4

2
2

22
5

242
4

2
2 =ω−ωω−ξ+ω−ω+ξ ∗∗ ccccc   (22) 

where ω is the frequency and 
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where ρ is the material density, J is the rotational inertia which in the case of material 
consisted of spherical grains of diameter D is equal to J=ρD2/10. 

When ω<<ω∗ equation (22) gives only one solution which corresponds to the shear 
wave propagating with the velocity ω/ξ≅c5 which is the conventional shear wave 
velocity. When ω=ω∗ equation (22) again gives only one solution corresponding to a 
shear wave traveling with velocity c∗, where 

 

( )
ρ+α

α+µ
=∗ BJ

Bc2   (24) 

Comparison of these two velocities with the aid of (23) and (17) leads to 

22222
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If one assumes that the total characteristic length l is at least not smaller than the 
particle diameter D, then the localization case, Λ→1 corresponds to the case of 
c∗/c5>>1. Thus the localization case should correspond to considerable dispersion in 
the shear wave: its velocity should markedly increase with the increase in frequency. 
It should be noted that the waves at frequencies close to ω∗ may considerably be 
attenuated by scattering since the length of the shear wave of frequency ω∗ is 
λ∗2=0.025D2Λ-2/(1+0.025D2/l2

2) which, in the localization range Λ→1, is already 
below the particle diameter. 

5. Conclusion 

The presence of independent microrotations in particulate materials (e.g. the gouge) 
can lead to considerable localization of deformation gradients which when measured 
and interpreted in a sense of conventional medium create an impression of strain 
localization and associated material instability. Such a phenomenon, if experimentally 
confirmed will give a strong evidence of importance of the microrotational and 
Cosserat effects. The same phenomenon also leads to a considerable dispersion in 
shear wave propagation which can be used for independent experimental verification 
of the proposed mechanism of apparent strain localization in fault gouge. 
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