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Abstract. Geophysics research has been faced with a growing need for automated techniques with which to
process large quantities of data. A successful tool must meet a number of requirements: it should be consistent,
require minimal parameter tuning, and produce scientifically meaningful results in reasonable time. We introduce
a hidden Markov model (HMM)-based method for analysis of geophysical data sets that attempts to address these
issues. Our method improves on standard HMM methods and is based on the systematic analysis of structural
local maxima of the HMM objective function. Preliminary results of the method as applied to geodetic and seismic
records are presented.

1 Introduction

In recent years, geophysics research has been faced with a growing need for automated techniques by which to pro-
cess the ever-increasing quantities of geophysical data being collected. Global positioning system (GPS) networks for
measurement of surface displacement are expanding, seismic sensor sensitivity is increasing, synthetic aperture radar
missions are planned to measure surface changes worldwide, and increasingly complex simulations are producing vast
amounts of data. Automated techniques are necessary to assist in coping of the deluge of information. These techniques
are useful in a number of ways: they can analyze quantities of data that would overwhelm human analysts, they can
find subtle changes in the data that might evade a human expert, and they assist in objective decision making in
cases where even experts disagree (for example, identifying aftershock sequences, or modes in GPS time series). These
techniques are not expected to replace human analysis, but rather to be tools for human experts to use as part of the
research cycle.
The field of geophysics poses particular challenges for automated analysis. The data is often noisy or of poor quality,

due to the nature of the sensor equipment; for similar reasons it is also often sparse or incomplete. Furthermore, the
underlying system is unobservable, highly complex, and still poorly understood by theory. Automated analysis is a
useful tool only if it can satisfy several criteria. The results produced must be consistent across experiments on the
same or similar data. Only minimal parameter tuning can be required, lest the results be considered the arbitrary
result of parameter selection. And the method must be computationally tractable, so results can be returned to the
user in reasonable time.
In this work, we investigate the use of hidden Markov models (HMMs) [1–5] as the basis for an automated tool

for analysis of geophysical data. We begin by giving a brief overview of hidden Markov models and introducing our
notation. We then present the standard method for solving for the optimal HMM parameters and discuss the inherent
local maxima problem associated with the HMM optimization problem. In answer to this we introduce our modified
robust HMM optimization method and present some preliminary results produced by this method.

2 Hidden Markov Models

A hidden Markov model (HMM) is a statistical model for ordered data. The observed data is assumed to have been
generated by a unobservable statistical process of a particular form. This process is such that each observation is
coincident with the system being in a particular state. Furthermore it is a first order Markov process: the next state is
dependent only the current state. The model is completely described by the initial state probabilities, the first order
Markov chain state-to-state transition probabilities, and the probability distributions of observable outputs associated
with each state.
Our notation is as follows: a hidden Markov model λ with N states is composed of initial state probabilities π =

(π1, . . . πN ), state-to-state transition probabilities A = (a11, . . . , aij , . . . , aNN ), and the observable output probability
distributions B = (b1, . . . , bN ). The observable outputs can be either discrete or continuous. In the discrete case, the
output probability distributions are denoted by bi(m), where m is one ofM discrete output symbols. In the continuous
case, the output probability distributions are denoted by bi(y, θi1, . . . , θij , . . . , θiM ) where y is the real-valued observable
output (scalar or vector) and the θijs are the parameters describing the output probability distribution. For the normal
distribution we have bi(y, µi, Σi).
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Fig. 1. A representation of the hidden Markov model, with hidden nodes in underlying system states q, and observable variables
O.

3 HMM optimization problem

For the series of observations O = O1O2 · · ·OT , we consider the possible model state sequences Q = q1q2 · · · qT to which
this series of observations could be assigned. For a given fixed state sequence Q, the probability of the observation
sequence O is given by

P (O|Q,λ) =

T
∏

t=1

P (Ot|qt, λ). (1)

Assuming statistical independence of observations,

P (O|Q,λ) = bq1(O1)bq2(O2) · · · bqT
(OT ). (2)

The probability of the given state sequence Q is

P (Q|λ) = πq1aq1q2aq2q3 · · · aqT−1qT
. (3)

The joint probability of O and Q is the product of the above, so that

P (O,Q|λ) = P (O|Q,λ)P (Q|λ), (4)

and the probability of O given the model is obtained by summing this joint probability over all possible state sequences
Q:

P (O|λ) =
∑

all Q=q1q2···qT

πq1bq1(O1)aq1q2bq2(O2) · · · aqT−1qT
bqT
(OT ). (5)

Although other optimization criteria are possible, most commonly we wish to optimize the model parameters so as
to maximize this likelihood P (O|λ). We can pose this as non-convex, non-linear optimization problem with constraints
on π, A, and B that reflect the fact that they are probabilities. Often this problem is presented as the equivalent
problem of maximizing the log likelihood, logP (O|λ).

4 Expectation-Maximization

The most common optimization technique employed to solve this problem is the Expectation-Maximization (EM)
algorithm [6]. We can pose the EM algorithm generally as follows: we wish to maximize a likelihood P (λ) where λ is
a set of model parameters. Given p(x, λ), a positive real-valued function on x × Λ measurable in x for fixed λ with
measure µ, we define

P (λ) = E[p(x, λ)|λ] =

∫

X

p(x, λ)dµ(x) (6)

and

Q(λ, λ′) = E[log p(x, λ′)|λ] =

∫

X

p(x, λ) log p(x, λ′)dµ(x). (7)

Here x is the so-called hidden variable, while p(x, λ) is often referred to as the complete data likelihood. The function
Q is often referred to as the Q-function. Note that the function p may be a function of the observable outputs y as
well as the parameters of the model λ, so p = p(x, y, λ). In this case, the integrals are over X → Y (X).
It can be shown that for a transformation F that if F(λ) is a critical point of Q(λ, λ′) as a function of λ′, then the

fixed points of F are critical points of P . This gives us the EM algorithm:



1. Start with k = 0 and pick a starting λ(k).
2. Calculate Q(λ(k), λ) (expectation step).
3. Maximize Q(λ(k), λ) over λ (maximization step). This gives us the transformation F .
4. Set λ(k+1) = F(λ(k)). If Q(λ(k+1), λ)−Q(λ(k), λ) is below some threshold, stop. Otherwise, go to step 2.

Note that this method is inherently sensitive to the initial conditions λ(0), and only guarantees eventual convergence
to a local maxima of the objective function, not the global maximum. Nevertheless, it is widely used in practice and
often achieves good results.

5 Optimization procedure for the HMM

For the hidden Markov model, we employ the EM method in following manner. We have

p(q,O, λ) = πq1bq1(O1)aq1q2bq2(O2) · · · aqT−1qT
bqT
(OT ), (8)

with P (λ) = E[p(q,O, λ)|λ] defined as in (5). If we let z be a set of state-indicator indicator vectors z = (z1, . . . , zT )
such that zit = 1 if qt = i, zit = 0 otherwise, then we can represent the complete data log likelihood as

N
∑

i=1

zi1 log πi +
N
∑

i=1

N
∑

j=1

T−1
∑

t=1

zitzj,t+1 log aij +
N
∑

i=1

T
∑

t=1

zit log bi(Ot). (9)

From this we can calculate

Q(λ, λ(k)) =

N
∑

i=1

τ
(k)
i1 log πi +

N
∑

i=1

N
∑

j=1

T−1
∑

t=1

τ
(k)
ijt log aij +

N
∑

i=1

T
∑

t=1

τ
(k)
it log bi(Ot) (10)

where

τijt = P (Zit = 1, Zj,t+1 = 1|O, λ) t = 1, . . . , T − 1, (11)

τit = P (Zit = 1|O, λ) t = 1, . . . , T, (12)

and Z is a probabilistic component indicator variable analogous to z.
We wish to maximize Q(λ, λ(k)) over λ. We can view Q as the sum of three separable components, Q = Q1+Q2+Q3:

Q1(λ, λ
(k)) =

N
∑

i=1

τ
(k)
i1 log πi, (13)

Q2(λ, λ
(k)) =

N
∑

i=1

N
∑

j=1

T−1
∑

t=1

τ
(k)
ijt log aij , (14)

Q3(λ, λ
(k)) =

N
∑

i=1

T
∑

t=1

τ
(k)
it log bi(Ot). (15)

Maximization of each component may be pursued separately. We have

πi =
π

(k)
i b

(k)
i (O1)

∑N
j=1 π

(k)
j b

(k)
j (O1)

, (16)

as the maximizing solution for Q1 and

aij =

∑T−1
t=1 τ

(k)
ijt

∑T−1
t=1 τ

(k)
it

, (17)

as the maximizing solution for Q2. If the outputs of the model are discrete, the maximizing solution for Q3 is

bi(m) =

∑T
t=1 τ

(k)
it δ(Ot −m)
∑T

t=1 τ
(k)
it

(18)

where m is a possible output symbol. If the outputs of the model are continuous, then there is no general explicit
formula for the maximum value of the output distribution parameters. However, for certain special forms of the output



distribution, the maximizing values can be calculated analytically. For example, in the case of multivariate Gaussian
output distributions (bi(y) = n(det(Σi))

−1/2 exp(−(y−µi)
TΣ−1

i (y−µi)/2), where n is a normalizing factor), we have

µi =

∑T
t=1 τ

(k)
it Ot

∑T
t=1 τ

(k)
it

, (19)

and

Σi =

∑T
t=1 τ

(k)
it (Ot − µ

(k+1)
i )(Ot − µ

(k+1)
i )T

∑T
t=1 τ

(k)
it

. (20)

What remains is to calculate the probabilities τit and τijt. To do so, we make use of the lattice structure of the
HMM to perform an iterative calculation, known as the forward-backward procedure. Consider the forward variable
αt(i) defined as

αt(i) = P (O1 · · ·Ot, Zit = 1|λ). (21)

This is the probability of observing the partial sequence O1 · · ·Ot and that the system is in state i at time t, given the
model λ. We can solve for αt(i) inductively as follows:

1. Initialization:
α1(i) = πibi(O1), i = 1, . . . , N. (22)

2. Induction:

αt+1(j) =

[

N
∑

i=1

αt(i)aij

]

bj(Ot+1), t = 1, . . . , T − 1,

j = 1, . . . , N. (23)

This is an O(N2T ) computation. Note that it also gives us an efficient way to calculate the value of the objective
function, since

P (O|λ) =

N
∑

i=1

αT (i). (24)

As the second part of the forward-backward procedure, we consider the backward variable βt(i) defined as

βt(i) = P (Ot+1 · · ·OT |Zit = 1, λ). (25)

This is the probability of observing the partial sequence Ot+1 · · ·OT , given that the system is in state i at time t and
the model λ. Once again we can solve for βt(i) inductively:

1. Initialization:
βT (i) = 1, i = 1, . . . , N. (26)

2. Induction:

βt(i) =
N
∑

j=1

aijbj(Ot+1)βt+1(j), t = T − 1, . . . , 1,

i = 1, . . . , N. (27)

This is also an O(N2T ) computation.
Now we can calculate the probabilities τ using the forward and backwards variables. For instance,

τit =
αt(i)βt(i)

∑N
i=1 αt(i)βt(i)

(28)

is the probability of being in state i at time t, given the observation sequence and the model. Note that we can use τti
to solve for the individually most likely state qt at time t, as

qt = argmax
1≤i≤N

(τit), t = 1, . . . , T. (29)

We can also now calculate τijt, the probability of being in state i in time t and state j at time t + 1, given the
model and the observation sequence. Using our definitions of the forward-backward variables, we can write

τijt =
αt(i)aijbj(Ot+1)βt+1(j)

∑N
i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

. (30)



6 Multimodality of the HMM objective function

As previously noted, the EM algorithm only guarantees convergence to a local maximum. Since the algorithm is
deterministic, the initial model parameter selection controls which local maxima is eventually reached. In many cases,
the EM algorithm functions well; this is one reason for its popularity. However, the likelihood of an HMM has potentially
an exponential number of local maxima; this makes the optimization problem much more difficult.
Consider a set of HMM parameters for which πi, aij ∈ {0, 1} for i, j = 1, . . . , N . Let Q∗ = q∗1 · · · q

∗
T be the state

sequence for some particular π∗, A∗ chosen from this set. Then

α(i) =

{

bq∗1 (O1) · · · bq∗t (Ot) if i = q∗t
0 otherwise

, (31)

and

β(i) =

{

bq∗
T
(OT ) · · · bq∗t+1

(Ot+1) if i = q∗t
0 otherwise

, (32)

assuming that bq∗t (Ot) > 0 for all t. This implies that

τit =

{

1 if i = q∗t
0 otherwise

, (33)

and that

τijt =

{

1 if i = q∗t and j = q∗t+1

0 otherwise
. (34)

From this we can derive the updates:

π
(k+1)
i =

{

1 if π
(k)
i = 1

0 otherwise
,

a
(k+1)
ij =

{

1 if a
(k)
ij = 1

0 otherwise
. (35)

As such, this solution is a fixed point of the EM transformation F , and therefore a critical point of the likelihood
P (O|λ). Since there are NN+1 different solutions of this form, there are also at least that many critical points of the
likelihood function. The question is, how many of these critical points are local maxima?
Assume that for a given solution λ∗ = (π∗, A∗, B∗) and resulting state sequence Q∗, the output probability distri-

butions B∗ are such that b∗i is an optimal estimator for the set of observable outputs Oq∗t
such that q∗t = i. If this set

is empty, that is, there are no observable outputs associated with the distribution bi, the let bi = bj where bj is an
optimal estimator for some nonempty subset of observations. In the case where the solution is such that q∗1 = · · · = q∗T ,
we also therefore have b1 = · · · = bN . This implies that for small perturbations of π,A,B designated επ, εA, εθ,

bq∗1 (O1) · · · bq∗
T
(OT ) ≥ bq1(O1, θq1 + εθq1) · · · bqT

(OT , θqT
+ εθqT

), (36)

for any sequence Q. Since
∑

allQ P (Q|λ) = 1,

P (O|λ∗) = bq∗1 (O1) · · · bq∗
T
(OT ) ≥

∑

allQ

(πq1 + επq1)bq1(O1, θq1 + εθq1)(aq1q2 + εAq1q2)bq2(O2, θq2 + εθq2)

· · · (aqT−1qT
+ εAqT−1qT

)bqT
(OT , θqT

+ εθqT
). (37)

So λ∗ is a local maximum. However, λ∗ is not a unique maximum but rather part of a locally maximum continuous
region of fixed points of F for which b1 = · · · = bN are optimal estimators of the joint observations and π and A are
unrestricted. To see this, consider

α′t+1(j) =

N
∑

i=1

αt(i)aij with α1(j) = πj , (38)

β′t(i) =

N
∑

j=1

βt+1(j)aij with βT (i) = 1. (39)



For b1 = · · · = bN we have then

τit =
α′t(i)β

′
t(i)

∑N
i=1 α′t(i)β

′
t(i)

, (40)

τijt =
α′t(i)aijβ

′
t+1(j)

∑N
i=1

∑N
j=1 α′t(i)aijβ

′
t+1(j)

. (41)

We note that
∑N

i=1 α′t(i) = 1 and β′t(i) = 1 and so

τit = α′t(i) (42)

τijt = aijα
′
t(i), (43)

and therefore π
(k+1)
i = π

(k)
i and a

(k+1)
ij = a

(k)
ij .

Suppose we wish to exclude all such degenerate solutions from our analysis. Then we can consider a particular data
set, one composed of S distinct segments s, each starting at t1(s) and ending at tT (s). For each segment the outputs
Os = Ot1(s) · · ·OtT (s) are all a single unique value, ms. For this data set, the local maxima are solutions in which the
possible output values for each state are unique, so that if bi(m) 6= 0, then bj(m) = 0 for all i 6= j, and are contiguous
in the time sequence. More specifically, let the Nsi

segments si(1), . . . , si(Nsi
) be associated with the state i; that is,

let bi(msi(k)) 6= 0, k = 1, . . . , Nsi
. Furthermore, let Lsi(k) be the length of the segment si(k). Then a locally maximum

model λ∗ is such that

π∗i =

{

1 if O1 = msi(k) for some k
0 otherwise

,

a∗ij =



















∑Nsi
k=1 Lsi(k)−1

∑Nsi
k=1 Lsi(k)

if i = j

1
∑Nsi

k=1 Lsi(k)

if tT (si(k)) + 1 = t1(sj(l)) for some k, l

0 otherwise

,

bi(m)
∗ =

{ Lsi(k)
∑Nsi

k=1 Lsi(k)

if m = msi(k) for some msi(k)

0 otherwise
. (44)

We first present a simple illustrative example. Consider the sequence O = 112233 of length T = 6, on which we
train a model of size N = 2. Consider

λ1 =







π =

(

1
0

)

, A =

(

0 1
0 1

)

, b1 =





1
0
0



 , b2 =





1/5
2/5
2/5











,

λ2 =







π =

(

1
0

)

, A =

(

1/2 1/2
0 1

)

, b1 =





1
0
0



 , b2 =





0
1/2
1/2











,

λ3 =







π =

(

1
0

)

, A =

(

2/3 1/3
0 1

)

, b1 =





2/3
1/3
0



 , b2 =





0
1/3
2/3











.

Then P (O|λ1) = 0.00512, P (O|λ2) = 0.015625, P (O|λ3) = 0.01, so λ2 is a local maximum. A second local maximum
exists for which q1 · · · q4 = 1, q5q6 = 2; a third maximum is one for which the entire sequence is in the same state.
Now we present the general case and demonstrate that λ∗ of the form described in (44) is in fact a local maximum.

For ease of notation, we assume without loss of generality that t1(si+1(1)) > tT (si(1)), that is, the segment labels
increase monotonically with t. We furthermore define

Li =

Nsi
∑

k=1

Lsi(k). (45)

Then we have

P (O|λ∗) =

(

L1 − 1

L1

)L1−1(

1

L1

)

· · ·

(

LN − 1

LN

)LN−1

·

Ns1
∏

k=1

(

Ls1(k)

L1

)Ls1(k)

· · ·

NsN
∏

k=1

(

LsN (k)

LN

)LsN (k)

(46)



Now consider a model λ which is slightly perturbed from λ∗ so that

b1(ms2(1)) =
1

L1 + 1
,

b1(ms1(k)) =
Ls1(k)

L1 + 1
, k = 1, . . . , Ns1

b2(ms2(1)) =
Ls2(1) − 1

L2 − 1
,

b2(ms2(k)) =
Ls2(k)

L2 − 1
, k = 2, . . . , Ns2 , (47)

and

a11 =
L1

L1 + 1
, a12 =

1

L1 + 1
, (48)

a22 =
L2 − 2

L2 − 1
, a23 =

1

L2 − 1
. (49)

In other words, this model λ corresponds to a state sequence Q such that qt = 1 for t = 1, . . . ,L1 + 1. We have

P (O|λ) =

Ls2(1)−1
∑

n=0

{(

L1

L1 + 1

)(L1−1+n)(

1

L1 + 1

)(

L2 − 2

L2 − 1

)(L2−1−n)(

1

L2 − 1

)

· · ·

(

LN − 1

LN

)(LN−1)

·

Ns1
∏

k=1

(

Ls1(k)

L1 + 1

)Ls1(k)
(

1

L1 + 1

)n(

Ls2(1) − 1

L2 − 1

)Ls2(1)−n

·

Ns2
∏

k=2

(

Ls2(k)

L2 − 1

)Ls2(k) Ns3
∏

k=1

(

Ls3(k)

L3

)Ls3(k)

· · ·

NsN
∏

k=1

(

LsN (k)

LN

)LsN (k)
}

, (50)

From which it is evident that P (O|λ∗) > P (O|λ). A similar analysis follows for the model λ perturbed from λ∗

corresponding to the state sequence Q such that qt = 1 for t = 1, . . . ,L1 − 1. We can extend this analysis to all such
models λ such that A and B are perturbed in a like manner from the segment boundaries from A∗ and B∗, so that
P (O|λ∗) > P (O|λ). From this we can conclude that λ∗ is in fact a local maximum.
We note that for S unique segments there are

(

S−1
N−1

)

local maxima λ∗ of this form utilizing all N states, since we
choose N − 1 of the S − 1 possible transitions between segments as our state transition points. We further note that
this same analysis holds true for all models for which less than the full number of states are utilized. So in total there
are

∑N
n=1

(

S−1
n−1

)

local maxima for this data set and model size N . If S ≥ N , then
∑N

n=1

(

S−1
n−1

)

≥ 2N−1, so the lower
bound on the number of local maxima is exponential in the model size.
An additional problem arises for certain forms of the output distribution B. For these forms there are values of

the parameters θim such that the likelihood achieves an unfavorable global maximum. By unfavorable, we mean that
these globally maximum model parameters are less informative about the values of the hidden variables than models
with merely local maxima. For example, in the case of Gaussian output probability distributions, the likelihood
goes approaches infinity as the eigenvalues of the variances approach zero. We can identify

∑N
n=1

(

N
n

)
∑D

d=1

(

D
d

)

such
unfavorable global maxima, where D is the dimension of the observations, since the likelihood will approach infinity
if even one eigenvalue of the variance of a single state approaches zero. This implies that the number of such global
maxima is exponential in both the number of states and in the dimension of the observable data.

7 Q-function penalty terms

The analysis of the previous section indicates that many fixed points of the EM transformation and sub-optimal local
maxima are located in the model parameter space at predictable points: where πi, aij ∈ {0, 1} and bi = bj . It would
therefore appear to be advantageous to augment to the standard optimization procedure so as to avoid these parts of
the parameter space. One way to do this is to add penalty terms to the Q-function.
For instance, we can modify Q1 and Q2 by adding log barrier terms:

Q′1(λ, λ
(k)) =

N
∑

i=1

τ
(k)
i1 log πi + ωQ1

N
∑

i=1

log πi, (51)

Q′2(λ, λ
(k)) =

N
∑

i=1

N
∑

j=1

T−1
∑

t=1

τ
(k)
ijt log aij + ωQ2

N
∑

i=1

N
∑

i=1

aij , (52)



where ωQ1
, ωQ2

> 0 are small weighting terms. Our update rules are then

πi =
π

(k)
i b

(k)
i (O1) + ωQ1

∑N
j=1 π

(k)
j b

(k)
j (O1) +NωQ1

, (53)

aij =

∑T−1
t=1 τ

(k)
ijt + ωQ2

∑T−1
t=1 τ

(k)
it +NωQ2

, (54)

which cannot lie in {0, 1}.
No general penalty term exists to assist in avoiding the condition where bi = bj . However, for particular forms of

the output distribution penalty terms can be devised. For example, for discrete output distributions, we can add a
penalty term based on the inner product:

Q′3 =

N
∑

i=1

T
∑

t=1

M
∑

m=1

τ
(k)
it δ(Ot −m) log bi(m)− ωQ3

N
∑

i=1

N
∑

j=1

M
∑

m=1

bi(m)bj(m) (55)

where ωQ3
> 0 is a small weighting factor. As a second example, we consider the case of Gaussian output distributions.

We add a penalty term based on the squared Euclidean distance:

Q′3 =
N
∑

i=1

T
∑

t=1

τ
(k)
it

(

log n−
1

2
log det(Σi)−

1

2
(mi − µi)

TΣ−1
i (mi − µi)−

1

2
(Ot −mi)

TΣ−1
i (Ot −mi)

+
ωQ3

2

N
∑

j=1

(µi − µj)
T (µi − µj)

)

. (56)

In both these cases conditions on the weighting terms ωQ3
can be found such that the function Q3 remains concave and

thus has a single local maxima. Computing the solution to either maximization problem requires an iterative procedure
with a computational cost per iteration which is cubic in the dimension of the observations. As the optimization of the
original cost function requires inversion of the covariance matrices at each EM iteration, the modified method merely
introduces a constant factor for a bounded number of iterations in the inner loop. In practice, solutions to Q′3 can be
found in very small (< 10) numbers of iterations, and good approximations in merely one or two.
We note in that these penalty terms do not help to escape from local maxima when the model parameters are

already at a point where bi = bj . Although random initialization of the model parameters makes this unlikely, alternate
initialization methods can make this more problematic. In such cases, one way to escape from the local maximum is
to perturb the distributions by some small amount when the case bi = bj is detected.
In the case of Gaussian output distributions we can impose an additional penalty term in order to deal with

unfavorable global maxima located where the covariance matrices become singular. Our penalty term is based on the
trace of the inverse of the covariance matrix, since

TrΣ−1
i =

D
∑

d=1

1

λid
(57)

where D is the dimension of the observations and λi1, . . . , λiD are the eigenvalues of the ith covariance matrix. The
modified Q-function is

Q′3 =

T
∑

t=1

N
∑

i=1

τ
(k)
it

(

log n+
1

2
log det(Σ−1

i )−
1

2
(mi − µi)

TΣ−1
i (mi − µi)−

1

2
TrΣ−1

i Si −
ωΣ
2
TrΣ−1

i

)

, (58)

where ωΣ is a weighting factor. This leads us to an optimum solution in which we add a diagonal matrix ωΣI to each
covariance matrix.
Incorporating all of the above, our modified EM algorithm is then:

1. Start with k = 0 and pick a starting λ(k).
2. Calculate Q′(λ(k), λ) (expectation step).
3. Maximize Q′(λ(k), λ) over λ (maximization step). This gives us the transformation F .
4. Set λ(k+1) = F(λ(k)). If Q′(λ(k+1), λ)−Q′(λ(k), λ) is below some threshold, stop. Otherwise, go to step 2.
5. Check to see if bi = bj for any i 6= j. If so, then perturb the current model so that θi = θi + εθ, and go to step 2.
Otherwise, stop.



8 Experimental Results

We applied our robust HMM method to GPS and seismicity data collected in the southern California region. In our
implementation we assume Gaussian output probability distributions for both FMM and HMM for simplicity and ease
of computation. Presented here are some preliminary experimental results.

The GPS data consists of surface displacement signals collected from a number of sites scattered around the southern
California region. The data was three dimensional, consisting of east-west displacement, north-south displacement,
and vertical displacement measurements, collected daily. Figure 2 shows a representative example of the results of the
method applied to GPS data collected in the city of Claremont, California. The method determined that a five state
model was optimal for this data set. Using a five state model, the HMM was able to separate the data into distinct
classes that correspond to physical events. These classes are indicated in the figure by different shades and vertical
lines. There is one instance of class 2 in the midst of class 3, corresponding to sharp north-south and vertical movements
at that time sample, but otherwise the classes are sequential. The states before and after the Hector Mine quake of
October 1999 are clearly separated, and distinct in turn from a period in 1998 in which well ground water drainage
caused displacement in the vertical direction. Sharp movements in the north-south direction (as yet unattributed) were
also isolated as a separate class.
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Fig. 2. HMM analysis results of global positioning system (GPS) relative displacement data collected from a receiver located
in Claremont, California. Classes associated with different regimes are indicated by line coloration and vertical indicator lines.

The seismicity data was taken from the Southern California Earthquake Center (SCEC) catalog. For this experi-
ment, the original data set was processed to produce six components for each observed seismic event between January
1st, 1960 and December 31st, 1999: latitude, longitude, depth, magnitude, time to next event, and time to previous
event. Events of less than magnitude four were removed. The method determined that a model with 17 states would be
optimal for this data sets. The data was grouped into scientifically meaningful classes, including clusters of aftershocks
for the Hector Mine, Landers, and Northridge earthquakes, Transverse Range events, and swarm events in the Salten
Sea area. Furthermore, relationships between the classes as indicated by the transition probabilities reveal evidence
of scientifically meaningful phenomenon such as stress waves. Figure 3 show examples of the classifications produced
by the method. Circles indicate the location of earthquakes; circle size corresponds to magnitude. Lines represent the
major faults.

9 Conclusions and Future Work

We have presented a tool for geophysical data analysis that is based around the use of hidden Markov models (HMMs).
The tool employs a method for estimating the optimal HMM parameters that is based on the analytical analysis of
certain local maxima of the HMM objective function that originate in the model structure itself rather than the
data. This analysis is then used to modify the standard optimization procedure through the application of penalty
functions which enable the solution to avoid many local maxima. This improves both the quality and consistency
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Fig. 3. HMM analysis result for SCEC catalog seismicity data. Upper left: the class of Transverse Range events; upper right:
the class of Hector Mine and Landers earthquake aftershocks; bottom left: the class of Salten Sea swarm events; bottom right:
the class of Northridge earthquake aftershocks.

of results. Preliminary experiments employing this method in the analysis of geodetic and seismic record data have
yielded scientifically meaningful results.
As part of our continued work on this method we are performing large-scale systematic analysis of the effect of the

modifications on the final solution. In addition, we are applying the method to a more diverse assortment of geophysical
data sets.
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