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Abstract 
In the cases when the Earth’s curst possesses self-similar structure it can be 
modelled by a sequence of continua each determined by the size of the 
averaging volume element. It is shown that tensorial properties and integral state 
variables scale by power laws with exponents common for all components of the 
tensors. Thus the scaling is always isotropic with anisotropy accounted for by 
the pre-factors. Real systems are not self-similar therefore the proposed 
approach is based on their approximation by self-similar systems. A necessary 
condition is formulated for such an approximation. 

Introduction 

Modelling geological phenomena using the concept of fractals has attracted
considerable interest (eg, [1]-[3]) because it offers a rational method of dealing with such a
highly irregular structure as the Earth’s crust. The method is based on developing power
scaling laws pertinent to different aspects of the Earth’s crust behaviour. When the
mechanics of fractal objects is considered, two essential problems arise. First, the highly
irregular objects no longer permit the introduction of a scale at which they can be treated
using the methods of continuum mechanics. Even the basic notions, such as stress and
strain cannot be introduced. For instance, the stress renormalisation accounting for the
fractal scaling of elementary area [4] leads to non-traditional units of stress that can even
depend on the position within the material. On the other hand, the methods of
discontinuous mechanics (like the distinct element method) become computationally
prohibitive when multi-scale objects are modelled. Thus, a rational method is needed that
can reconcile the irregular nature of fractal objects with the highly developed machinery of
continuum mechanics. Second, the fractal description is based on the idea that the object is
self-similar. This is a very strong property leading to the conclusion that all functions
which are functions of the scale must only be power functions. In reality however, the
natural dependencies are only approximated by the power functions. Then the conditions
have to be formulated in which the power-law approximation is consistent with the notion
of self-similarity. 

The present paper aims at addressing these two problems. 
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Continuum multi-scale modelling of self-similar objects 

The main obstacle for modelling a fractal material by the tools of continuum mechanics
is the absence of a characteristic scale which means that the material possesses
discontinuities of all scales. In order to overcome this obstacle consider a material, say a
volume of the Earth’s crust with fractal structure, chose a scale, H, and remove all
discontinuities of the size H and greater. Thus we obtain a material with truncated
structure as well as a scale at which the truncated material can be modelled as a
continuum. Therefore, the actual stress computations can be conducted for an object that is
not fractal but rather a continuum that models the material with certain structure of
discontinuities of the sizes smaller than H. By varying H one can model the self-similar
fractal objects by a set of continua each of them being characterised by its own yardstick,
H, specifying the scale of the continuum. Each continuum models the fractal material at
the scale H in the sense that the volume elements of size H cut from both the original
material and the modelling continuum respond equally to uniform loading. The yardstick
H determines the resolution: no features with all dimensions smaller than H are viewable
in the H-continuum, Dyskin, (2001)[5]. Thus the H-continuum replaces the original
material with the one possessing modified microstructure in which only those
microstructural elements are present that have characteristics sizes less than H.  

Since the fractal objects have no characteristic length, a continuum set of scales, H>0,
should be used. Thus self-similar fractal objects should be modelled by a continuum of
continua all characteristics being functions of H. If these functions do not change sign
then, according to the general theorem (eg, [1]) they must be the power functions,
f(H)=f*Hα , where f* is a prefactor.  
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This is held because (a) the tensorial property implies that by coordinate rotations all
tensorial components should be linearly transformed and (b) the power functions with
different exponents are linearly independent. 

In particular, if the modelling continua are linearly elastic, the case considered
hereafter, the tensors of general anisotropic moduli, Cijkl, and compliances, Aijkl, should
scale as 
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Therefore, the tensors of elastic moduli and compliances must scale isotropically. This
property is independent of the microstructure meaning that no matter what the anisotropy
of the material is the scaling must be isotropic. The anisotropy is accounted for by the
prefactors, cijkl and aijkl. The particular values of α, β, cijkl and aijkl depend on the material
structure. The case of parts of the Earth’s crust with self-similar crack distributions is
considered in the following section. 
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Scaling laws for elastic moduli in Earth’s crust with self-similar 
distributions of cracks 

Consider a material containing a self-similar distribution of cracks: 
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where, w is the concentration factor chosen to ensure the specified total concentration, vt.
This distribution has a remarkable property no other self-similar distribution possesses that
will make it possible to suggest an accurate procedure of computing the effective moduli
as power functions of the crack size. Consider the probability, P(n), that in a vicinity of an
crack of size R, ie a region of size proportional to R, there are cracks of smaller sizes, say
from R/n to R, where n>1: P(n)~w(n3 -1), ie it does not depend on the crack size, R. Since
(3) represents real distributions only asymptotically as Rmax/Rmin→∞, ie as w→0 (vt=const),
for any n the value of w can be chosen small enough to make the probability negligible for
any crack size.  

This property can be interpreted in the sense that for any crack the probability to find
nearby a crack of a similar size is negligible; only cracks of greatly different sizes can be
found there. Mechanically it means that the interaction between the cracks of similar sizes
can asymptotically be neglected; only interaction between cracks of very different sizes is
to be taken into account. This justifies the use of property of the differential self-consistent
method for calculating the effective characteristics considered by Salganik (1973)[6].  

According to the method, the compliance increment ∆Aij, i,j=1, …, 6, at each scale is
determined by the contribution of non-interacting cracks considered in an effective
continuum. This contribution is proportional to the concentration of the group of cracks at
hand, wdH/H. Therefore  

 HdHAAwSHAdHHA ijijij /),...,()()( 6611+=+  (4)
Here Sij is a homogeneous function of the first degree specific for the given geometry

and distribution of parameters of the cracks. 
A similar equation can be written in terms of elastic moduli. Substituting (2) into (4) or

its analogue for elastic moduli one obtains the following scaling equations 

 6...1,),...,,(),...,,( 661211661211 =Λ== jicccwcaaawSa ijijijij αβ  (5)
where function Λij represents the contribution of cracks to the elastic moduli at each step
of the self-consistent method. These equations will be solved for two specific cases. 

Isotropically oriented disk-like cracks 
In the case of randomly oriented disk-like cracks, the material is isotropic. Then, the

components of function Λij can be extracted from the expressions for effective Young’s
modulus, E, and Poisson’s ratio, ν, for non-interacting cracks (eg, [6]):  
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where Em and νm are the Young’s modulus and Poisson’s ratio of the material. The solution
of the second equation in (5) gives the following scaling law 
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Plane with two mutually orthogonal sets of cracks 
Consider now a 2-D problem for a plane with two mutually orthogonal sets of cracks.

The self-similar distribution function in 2-D has the form 

 3)( −= llf ω  (8)
where, w is the concentration factor ensuring the specified total concentration, l is the
crack length. It is assumed that the set of cracks perpendicular to the xi axis is
characterised by the distribution ωi/l3 such that the total distribution is ω/l3 with the
concentration factor ω =ω1 +ω2. 

We consider Vavakin and Salganik’s (1978) [7] solution for the effective compliances
for an orthotropic plate with a set of non-interacting cracks aligned to one of the material's
symmetry axes and generalise it to two sets of non-interacting cracks and using the method
outlined above one obtains the scaling equations (see Dyskin 2002 [8] for details): 
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These equations have a unique solution that produces the following scaling laws: 
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As the concentration of one of the sets vanishes, say ω2→0, the exponent and all
compliances except a11 vanish. The material becomes completely rigid in direction x2. 

Self-similar approximation 

The fact that all components of the tensorial functions of H must scale with the same
exponent suggests that the property of self-similarity is very restrictive reaching beyond
the power law. This implies that not all systems which show dependencies close to the
power ones can be approximated by self-similar systems. In order to derive conditions
under which such an approximation is possible, we first analyse the way the fractal
concept is applied to real systems.  

Suppose a system has a property which scales as f(H)>0. This function is then plotted
in log-log coordinates and, if the plot has a region close to a straight line, the fractal
property is pronounced to be held within this region. Mathematically this corresponds to
representing the function as ξ =ln f(exp(η)). This is a function of η. If it is sufficiently
smooth, by linearising it in a vicinity of ηo=lnHo and returning to the original variables one
obtains the self-similar approximation:  



 57 

 0)(,
)(

)('
,)()( 0

0

00

0
0 ≠=








≈ Hf

Hf
HHf

H
HHfHf α

α

 (11)

Thus one can always approximate any function by a power one at list in a sufficiently
narrow vicinity of Ho. Obviously, the formula generalises to the case f(H)<0.  

Real systems shall of course be characterised by a set of scale-dependent properties. If
there is a subset of properties with the same units f1(H), f2(H), … then by summation
multiplication and multiplication by a dimensionless number new properties can be
derived (eg rotation of the tensor of elastic moduli). Such properties that permit summation
and multiplication will be here called compatible. (All other functions on the set of
compatible properties can be reduced to may be infinite sequences of summations and
multiplications.) Therefore, the self-similar approximation to be meaningful should
preserve these operations. This means that the self similar approximation of the product
and the sum of two functions in a vicinity of the same point, H0, should be the product and
the sum of the corresponding approximations respectively. We shall check this property
now. (The case of multiplication by a dimensionless number is trivial.) Suppose  
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Then for multiplication we have the necessary property: 
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However for summation a similar property 
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Equation (15) establishes equivalence between the properties. Thus only systems that
are described by sets of compatible properties equivalent in the sense of (15) can be
approximated by self-similar ones. This is a necessary condition of self-similar modelling. 

Conclusions 

The proposed multi-scale modelling of mechanical behaviour of the Earth’s crust with
self-similar structure is based on representing it as a continuum of continua of different
scales. In such a modelling scaling of mechanical properties i.e. transition from one
continuum to another is described by power laws. The tensorial mechanical properties
scale by power laws with exponents common for all components of the tensors. 
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Real systems are not self-similar, so one can only talk about their approximation by the
self-similar ones. Such an approximation is based on representing all scale-dependent
properties in log-log coordinates and linearising them in a vicinity of a certain scale. This
provides a local (in terms of scale) power law approximation. When the real system is
described by a set of properties, each of them should be approximated in a vicinity of the
same scale. However, the self-similar approximation is only possible when all compatible
properties (the ones which permit summation and multiplication) have power law
approximation with the same exponent.  
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