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Abstract
We present a method of constructing low-dimensional nonlinear models de-
scribing the main dynamical features of a discrete 2D cellular fault zone,
with many degrees of freedom, embedded in a 3D elastic solid. The fault
system contains a vertical planar fault with a uniform grid of cells where
slip is governed by a static/kinetic friction law surrounded by regions where
a uniform slip rate is prescribed to represent the tectonic loading. Quasi-
static stress transfer and tectonic loading along the fault are calculated
using 3D elastic dislocation theory. A given fault system is characterized by
a set of parameters that describe the dynamics, rheology, property disorder
and fault geometry. Depending on the location in the system parameter
space, we show that the coarse dynamics of the fault is confined to an
attractor whose dimension is significantly smaller than the space in which
the dynamics takes place. Our strategy of system reduction is to search for
a few coherent structures that dominates the dynamics and to capture the
interaction between these coherent structures. The identification of the
basic interacting structures is obtained by applying the Proper Orthogonal
Decomposition (POD) to the surface deformations fields generated during
the evolution of the fault. We use a feed-forward artificial neural network
(ANN) architecture for the identification of the system dynamics projected
onto the subspace (model space) defined by the most energetic coherent
structures. The ANN is trained using a standard back-propagation algo-
rithm to predict (map) the values of the observed state at a future time
given the observed state at the present time. This ANN then provides an
approximate dynamical model for the fault. The map can be evaluated
once to provide short term predictions or iterated to obtain prediction for
the long term fault dynamics.

Introduction

A first principles approach to modeling and forecasting the dynamics of an earth-
quake fault is not directly applicable because the governing physical laws and ob-
servations of controlling variables are not fully available at present. An alternative
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to this modeling approach is to build “phenomenological” models that attempt to
estimate the qualitative character of the system’s dynamics, and to make short-term
predictions based on that understanding, without attempting to provide a detailed
explanation of the physical mechanisms that ultimately govern the behavior of the
system. The basic idea of this approach is to develop data-driven models based on
analysis of the spatio-temporal strain patterns embedded in the observable surface
displacements. This approach is based on the observation that the effective dimen-
sion of the attractor of the dynamics is often significantly smaller than the original
phase space in which the dynamics takes place. In such cases, a few macroscopic
observables can approximate very well the present state of the system and predictive
models based on the dynamics of a reduced number of macroscopic observables can
then be constructed.

In order to identify these low-dimensional dynamical structures we apply the
Proper Orthogonal Decomposition (POD) - also known as the Principal Component
Analysis (PCA) or Karhunen-Loève expansion - to the ensemble of surface deforma-
tion data generated by the system. When dynamic weakening effects are present,
we show that a reduced number of deformation modes can explain on average most
of the elastic surface deformation. The dynamics of these modes evolves on a low-
dimensional attractor in the neighborhood of which the system spends most of its
time. The state of the system in this reduced space (model space) is represented
by a set of modal coefficients that measures the projection of the ground surface
deformation onto each dominant mode. Our next goal is to extract the nonlinear
modal dynamics in the model space by constructing a map of the observed state
at a future time given the observed an state at the present time. We describe pre-
liminary results in which artificial neural network has been successfully trained to
approximate the dynamics of the system projected in the model space.

Our method may be compared to the linear pattern dynamics introduced by
Rundle and his coworkers [8]. Their technique is based upon a Karhunen-Loève
expansion of the spatio-temporal seismicity data and is used to estimate a linear
stochastic model for the evolution of a probability density function for seismic ac-
tivity. In contrast to this method, which provides a local linear approximation in a
probability space, we propose a global nonlinear approximation that describes the
effective dynamics in a low-dimensional phase space.

Earthquake Model

The fault system corresponds to a discrete strike-slip fault of length L = 70 km and
width W = 17.5 km embedded in 3D elastic continuum [2]. The fault consists of a
uniform grid of dynamical cells where slip is governed by static/kinetic friction pro-
cesses, surrounded by regions with imposed constant slip rate of Vpl = 35 mm/year,
representing the tectonic loading. The brittle deformation at any fault position and
time is governed by quasi-static 3D elastic dislocation theory and prescribed distri-
butions of stress drops at fault locations where stresses reach the frictional strength
thresholds. We assume uniform static brittle strength, set to a value of τs =100
bars, everywhere on the fault plane. The stress at any fault position (cell) increases
with time due to the gradual tectonic loading and the time-dependent brittle de-
formation at other fault locations. If the stress τij reaches the static strength τs, a
brittle failure occurs at this location and cell (ij) slips so as to reduce its stress to an
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arrest level, τa,ij . The stress transfered from the failed cell can lead to subsequent
brittle failures (i.e., rupture propagation) if the stress anywhere increased to the
failure threshold. These failures may, in turn, induce or reinduce more brittle slip
events. After an initial slip event the strength drops to a dynamic level, τd,ij < τs,
and reinitiation of brittle slip on an already failed cell occurs when τij ≥ τd,ij there.
The failure iterations end when there are no more brittle instabilities. This marks
the end of an earthquake event whose strength is measured by its potency P defined
as the integral of slip over the rupture area. At the end of each model earthquake
the strength recovers back to τs. The static strength, dynamic strength, and arrest
stress are related to each other everywhere on the fault as

D =
τs − τa,ij

τs − τd,ij
, i = 1, . . . , Nx j = 1, . . . , Ny (1)

where D is a dynamical overshoot coefficient (see Ben-Zion and Rice [2] for ad-
ditional details). Its inverse, 1/D, proportional to τs − τd,ij , is a measure of the
dynamic weakening that characterizes static/kinetic friction models. An important
component of the fault rheology is the distribution of arrest stresses along the fault.
In the simulations used in this paper we chose random stresses, τa,ij =< τa > +Aξ,
where < τa, > represents the fault-averaged arrest stress, ξ is a random number uni-
formly distributed in the range [−0.5, 0.5], and A is the noise amplitude. The arrest
and dynamic stress distributions do not evolve in time (quenched heterogeneities)
and the dynamics is deterministic.

Effective dimension of the large scale motions

For the class of systems discussed in this paper the knowledge of the slip deficit,
φij = Vplt − uij , fully specifies the state of the fault: the number of degrees of
freedom is M = Nx × Nz and the state of the system is completely represented
by a vector in a finite, but high-dimensional vector space RM , where M = 4096
(Nx = 128, Ny = 32). We conjecture that a finite dynamic weakening leads to the
creation of spatial and temporal correlations that collapse the large scale dynamics
of the fault on an attractor of a smaller effective dimension m; m ¿ M . To prove
this assertion we investigate the effective dimension of two fault systems that differ
only in the value of the dynamic overshoot coefficient. System A with D = 1.5 has a
large dynamic weakening, while system B with D = ∞ has no dynamic weakening.
Both systems have random arrest stress distributions with < τa >= 80 bars and
A = 20 bars amplitude.

Each system observable contains a different amount of information for under-
standing the underlying dynamics. For prediction purposes we are only interested
in the dynamics at the large length and time scales. We have observed that the
evolution of the average slip deficit,

φ(t) =
1
M

∑

i,j

(φij(t)− < φij >) , (2)

and slip deficit variance,

σ(t) =
1
M

∑

i,j

(φij(t)− φ(t))2 , (3)
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Figure 1: The evolution of the average slip deficit (left) and its variance (right) for
the D = 1.5 (blue line) and D = ∞ (red line) fault systems.

provides a good qualitative measure of the dynamics at these scales. Due to the
inhomogeneity of the slip deficit, the slip fluctuations are measured from a local time
average < φij >. For system A (D = 1.5), we observe in Fig. 1 large oscillations
and smooth long term behavior between two consecutive large events and a clear
separation of time scales between the slow, large scale dynamics and the fast, small
scale dynamics. In principle, we can isolate the large scale dynamics which, evolving
slowly, will drive the rapidly relaxing small scale dynamics. By contrast, system
B (D = ∞) has small oscillations and noisy behavior; note the large difference in
the scale of the variance evolution for these two cases. For system B there are
no large scale events and the signature of small scale events renders the model
higher dimensional. A useful upper bound on the dimension of the system that
generates a time series is obtained by using a phase space analysis of the dynamics
and estimating the optimal value of the embedding dimension m. The embedding
concept comes from a phase space analysis of systems with deterministic dynamics.
It should be thought [3] as a method for providing a space formally equivalent to the
original attractor of the dynamics. In our case the embedding is performed using
coordinates made out of an observed slip deficit variance and its time delayed copies,

Xn = [σ(n), σ(n− d), . . . , σ(n− (m− 1)d)] , (4)

where σ(n) = σ(n∆t) is the slip deficit variance measured at equal sampling times
∆t = 0.1 years, d is a time lag (an integer multiple of the common lag ∆t), and m is
an embedding dimension. One way to estimate an optimal value of m is to look for
false neighbors in the phase space at a given value of m. To understand this concept,
consider the situation that an m dimensional delay reconstruction is an embedding,
but an (m−1) dimensional delay reconstruction is not. If the embedding dimension
is too small to unfold the attractor, a small Rm−1 neighborhood will contain points
that belong to different parts of the original attractor. Therefore, at a later time,
the images of these points under the system’s dynamics will split onto different
groups, depending on which part of the attractor the points are originally coming
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Figure 2: The fraction of false nearest neighbors (FNN) as a function of the em-
bedding dimension m = 1, . . . , 10. Compared to model B (D = ∞), there is a
dramatic decrease in the number of FNN for model A (D = 1.5), as the dimension
of the embedding phase space is increased. This suggests that a low-dimensional
deterministic dynamics is a good approximation for the large scale dynamics of the
fault.

from. This lack of a unique location of all the images in (m − 1) dimensions is
reflected in finding false neighbors, meaning that determinism is violated. When
increasing m, starting with small values, one can detect the minimal embedding
dimension by finding no more false neighbors. Then, we can use the fact that under
quite general circumstances the attractor formed by Xn in the embedding space is
equivalent to the attractor in the unknown space in which the system is living if
m is larger than twice the box counting dimension, d0, of the attractor. Often, an
m = d0 embedding dimension is enough for unfolding the attractor. As shown in
Figure 2, for the model with no dynamic weakening the percentage of false neighbors
saturates to a low value but it does not drop to zero. In contrast, the behavior of
the more realistic D = 1.5 model suggests a topological dimension in the range
3− 6. Having found an optimal embedding for the dynamics, we can now compute
the maximal Lyapunov exponent in order to estimate if the system’s dynamics is
chaotic. This exponent measures the exponential divergences of nearby trajectories
and is an average of these local divergences over the whole data. A positive maximal
Lyapunov exponent is a signature of chaos and it also sets a limit for predictability.
Its computation is based on the algorithm described by Kantz and Schreiber [3].
We choose a point Xn of the time series in the embedding space and determine all
neighbors Xn′ within a neighborhood Un of radius ε. Then we compute the average
over the distances of all neighbors to the reference part of the trajectory as a function
of the relative time ∆n. The logarithm of the average distance at time ∆n measures
the effective expansion rate over the time span ∆n. Repeating this calculation over
many values of n, the fluctuations over the effective expansion rates will average out.
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Figure 3: Estimates of the maximal Lyapunov exponent from the slip deficit variance
time series data, σ(t), for the D = 1.5 model. The logarithm of the stretching
factor is computed for three different neighborhood sizes, ε, and m = 6, 7, 8, 9, 10
embedding dimensions. The robust linear behavior of S(∆n) reflects the underlying
determinism of the data and its slope is an estimate of the maximal Lyapunov
exponent, λmax = 0.8 years−1 (the straight line has slope 0.08 and the unit of time
is 0.1 years).

Therefore, we compute

S(∆n, ε, m) = 〈ln(
1
|Un|

∑

Xn′∈Un

|Xn+∆n −Xn′+∆n|)〉n , (5)

where the outer bracket denotes the averaging over the reference point Xn. If for
some ranges of ∆n, ε, and m the function S(∆n, ε, m) exhibits a robust linear in-
crease, its slope is an estimate of the maximal Lyapunov exponent λmax per time
step. Figure 3 shows three bundles of curves corresponding to three neighborhood
sizes, ε = 0.377, 0.671, and 1.19, as can be seen for ∆n = 0. Each bundle shows
the behavior of the expansion rate for m = 6,7,8,9 and 10 and proves that the
result is robust to changes in ε and does not depend on the embedding dimen-
sion when m is large enough. Our estimate for the maximal Lyapunov exponent is
λmax = 0.8 years−1. We can therefore conclude that the large scale motions have a
positive maximal Lyapunov exponent and exhibit sensitive dependence on the initial
conditions. This sets a fundamental limitation to long-term earthquake forecasting.
The largest Lyapunov exponent, λmax, gives an approximate estimate for the pre-
dictability time, Tp ' 1/λmax = 1.25 years, but for extended systems the situation
can be very complicated [4]. Generally, the predictability time is scale dependent
and can be much longer than the rough estimation Tp ' 1/λ. As we will shortly
see, at the large length scale of interest for forecasting, a better estimation of the
predictability time is Tp ' 10 years.
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Proper Orthogonal Decomposition

The dynamics of the first and second order moments of the slip and stress fault fields
provides an adequate description of the large scale motions. Unfortunately, their
measurement poses very difficult problems: the stress field is not directly observable
while the slip field requires the solution of an ill-posed inverse problem. Therefore,
we propose an alternative analysis of the large scale motions based on the spatio-
temporal strain patterns embedded in the surface deformation fields of system A
(D = 1.5). The space-time signal is obtained by simultaneous measurements of the
surface displacements on a 64×32 uniform rectangular grid which covers a 100 km×
50 km surface area centered around the fault. For each surface deformation we
compute an ensemble of N snapshots, Uα(x, n) = Uα(x, tn), n = 1, . . . , N, and α =
x, y, z , at equally spaced moments, tn = n∆t, where ∆t = 0.1 years. The analysis
of each deformation direction proceeds identically, therefore we will henceforth drop
the deformation index α.

The identification of the active degrees of freedom in the surface deformation
fields uses the Principal Orthogonal Decomposition (POD) [1]. In order to perform
this analysis it is convenient to separate the flow U(x, n) = U(x, tn) into the time-
independent mean flow, < U(x) >, and the fluctuations, u(x, n), from the ensemble
average < U(x) >. Then, we compute the two point correlation matrix of the
fluctuations,

K(x,y) =
1
N

N∑
n=1

u(x, n)u(y, n) , (6)

whose normalized eigenvalues and eigenfunctions,
∫

K(x,y)φi(y)dy = λ2
i φi(x) , λ1 ≥ λ2 ≥ . . . ≥ λM ≥ 0 , (7)

identify and order the spatial modes of deformation. The dominant modes are then
used to construct a reduced representation of the model in the low-dimensional
subspace spanned by the first m eigenvectors, {φi, i = 1, . . . ,m; m ¿ M}:

u(x, n) '
m∑

i=1

Ai(n)φi(x) . (8)

The eigenvalues λi measure the mean square fluctuations of the ensemble in the di-
rections defined by their corresponding eigenfunctions: λi =< (u, φi)2 >. Therefore,
ranked in decreasing order of their eigenvalues, the eigenfunctions (sometimes called
empirical eigenfunctions, coherent structures, or dominant modes) will identify the
dominant directions in configuration space along which most of the fluctuations take
place.

The choice of the embedding dimension m is based on the computation of the
cumulative normalized eigenvalue spectrum, Λm, defined as:

Λm =

∑m
j=1 λj∑M
j=1 λj

. (9)

The cumulative spectrum can help us define an effective POD embedding dimension
by finding the minimum number of modes needed to capture some specific fraction
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f < 1 of the total variance of the data:

dPOD = arg min
m

{Λm : Λm > f} . (10)

For system A, we found that in order to explain f = 95% of the variance in the
ux, uy, uz data sets we need only 1,3, and 5 modes respectively. This is consistent
with our earlier estimates of the embedding dimension.

In order to identify the dynamics of the fault in this low dimensional phase space
we calculate the projections Ai(n), i = 1, . . . , m, of the surface deformation fields
onto the dominant deformation modes, i.e.,

Ai(n) = (u(x, n), φi(x)) . (11)

This way, we generate a small number of time series that encapsulate the projection
of the system’s dynamics onto the m-dimensional model space defined by Eq. (8).
They encode the evolution, interaction and dynamics of the spatial modes [1]. In
Figure 4 we represent the modal time series (red lines) corresponding to the first
four ux spatial modes. The blue lines describe the time evolution of the binned
potency released (the total potency released in a time interval of 0.1 years). For the
first deformation mode, A1(n), we notice that the location in time of the amplitude
jumps coincides with the time of large events. Moreover, the size of the amplitude
jumps is proportional with the size of the event. Therefore, if we can model the
evolution of this mode, the time and size of the amplitude jumps will give us accurate
information about the time and size of the large earthquake events.

Model Reconstruction and Short-Term Earthquake Forecasting

Using the POD decomposition we have identified a low-dimensional linear space in
which system A evolves most of the time and we have reduced its dynamics to a
small set of time series, Ai(n), i = 1, . . . , m, describing the evolution of the system in
this reduced linear space. We now face the problem of determining the underlying
dynamical process from the information available in these time series. They are
assumed to be governed by a nonlinear set of ODEs and our modeling approach
relies on the ability to identify an approximate m dimensional model,

Ai(n + 1) = Fi[A1(n), A2(n), . . . , Am(n)] i = 1, . . . ,m , (12)

that describes an explicit Euler approximation to the evolution and interaction of
the spatial modes. To identify this nonlinear mapping we employ an artificial neural
network (ANN). In this approach the neural network is used as a “black-box” tool
in order to develop a process model based only on observations of the system’s
input-output behavior [5, 6]. In the learning process the network adjusts its internal
parameters in such a way as to minimize the squared error between the network
output and the desired outputs.

In the present context, we use a feed-forward ANN to learn the dynamics of the
reduced model from the time series associated with the evolution of the dominant
modes. In order to improve the model forecasting skill it is useful to enlarge the
structure of the model to include information about the past history of the modes.
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Figure 4: Modal time series (red lines) describing the evolution of the first four ux

spatial modes of system A. This time dependence is determined by projecting the ux

surface deformation onto each POD mode every 0.1 years. The blue lines describe
the time evolution of the cumulative potency released over each 0.1 year interval.
Note the correlations between the time intervals of high potency released and the
discontinuities present in the temporal modes.
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Therefore, the input to the network consists of m time-delayed vectors Xi,

Xi = (Ai(n), Ai(n− 1), . . . , Ai(n− d)︸ ︷︷ ︸,
short-time memory

Ai(n− 2d), . . . , Ai(n− (K − 1)d)︸ ︷︷ ︸
long-time memory

) , (13)

where d is the delay and (K−1) is the number of the time-delay intervals. Due to the
presence in the surface dynamics of two different time scales, we have included both
short, Ai(n), Ai(n− 1), . . . , Ai(n− (d− 1)), as well as long time, Ai(n− d), Ai(n−
2d), . . . , Ai(n − (K − 1)d), memory information in the time-delayed input vectors.
The ANN output then provides a prediction of the temporal mode Ai at moment
(n + 1),

Ai(n + 1) = Fi[X1(n),X2(n), . . . ,Xm(n)] i = 1, . . . , m , (14)

based on input information describing the past mode histories.
The ANN is trained using a standard back-propagation algorithm [7] to predict

(map) the values of the observed state at a future time ti+1 given the observed state
at the present time ti. This ANN then provides an approximate dynamical model
for the fault. The map can be evaluated once to provide short term predictions or
iterated to obtain prediction for the long term fault dynamics.

We have applied this model reconstruction to extract the nonlinear dynamics
that controls the evolution of the first two ux surface deformation modes of the fault
system A: m = 2. For each mode a time-delayed vector with parameters K = 6 and
d = 4 was used. Because the dimensionality of the input space, m(K +(d−1)) = 22,
is higher than our estimated embedding dimension, we have decided to perform a
POD analysis of the ensemble of input vectors. This time, the POD decomposition
performs the analysis of the dominant temporal patterns that are created by the
modal dynamics. It reduced the 22 dimensional input space to a 6 dimensional
representation that contains 99% of the variance of the ensemble of input vectors.
The best short-term forecasting performance was obtained for an ANN with two
hidden layers of 10 neurons each.

Starting from an initial configuration describing for each input mode the current
amplitude and its past K values, we iterate the ANN forward in time for a number
of F steps. At each time step the output of the network was used to update and
reconstruct the ANN input for the next time step. In Figure 5 we present one of
the ANN predictions (blue line) for the D = 1.5 model using F = 200 steps and we
compare it with the true evolution of the most dominant surface mode (red line).
The goal is to predict the time and the size of the jumps in the evolution of the
first mode amplitude, which, as we have already discussed, corresponds to the time
and size (potency) of large seismic events. Due to the time delay involved, the
best time resolution of the forecast cannot be in this case less than T = 0.1 years.
As the fault evolves to the next time step, 0.1 years later, we update the present
state of the system and generate a new F step forecast starting from this new state.
This procedure is intended to incorporate the information about the system and its
current state as is continuously generated by new observations. We observed that
depending on the location of the system on its underlying attractor regions of large
predictability time coexist with regions of relatively short predictability time [4]. We
also noticed a systematic bias in estimating the time to the next large event.
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Figure 5: Evolution of the first ux temporal mode as predicted by the iterated ANN
(blue line). The red line represents the projection of the system dynamics onto the
first coordinate (mode one) of the model phase space.

Conclusions

We describe a conceptual framework for modeling and forecasting the evolution of
a large strike-slip earthquake fault. The approach relies on the detection of spatio-
temporal strain patterns embedded in the observable surface displacements: no de-
tailed knowledge of the fault geometry, dynamics, or rheology is required. Rather
than directly modeling the fault dynamics, we propose instead to model the dynam-
ics of observable surface deformations, which are nonlinearly related to the original
dynamics of the fault system. The essence of the method is the discovery that the
large length and time scales motions have a strong low-dimensional, deterministic
component and are therefore amenable to representation by a deterministic model.
We have also found that the large scale motions provide reliable forecasting informa-
tion about the large seismic events. These two fundamental results set the stage for
standard data processing and model reconstruction techniques. First, we identify
the large scale motions with generalized directions (spatial modes) along which the
dynamics has its largest fluctuations. Finding these directions is the natural task
of the proper orthogonal decomposition applied to the ensemble of surface defor-
mations generated during the evolution of the system. The most dominant spatial
modes define the model phase space and provide an optimal embedding for the large
scale dynamics of the system. Second, the model reconstruction consists in finding
a nonlinear set of ODEs whose trajectory in model phase space approximates the
system trajectory projected into the model phase space. This is a learning task that
can be successfully accomplished by an artificial neural network.

The current paper is concerned primarily with introducing a forecasting method-
ology. The obtained results are preliminary and a promising framework for getting
started. Continuing studies along the directions of this work may have a significant
impact on the earthquake predictability problem.
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