

 243

Parallel Performance of Tectonic Loading Process

Model at Transcurrent Plate Boundaries

Kengo Nakajima(1), Chihiro Hashimotoand(2) and

Mitsuhiro Matsu’ura(2)

(1) Research Organization for Information Science and Technology (RIST), Tokyo,
Japan (e-mail: nakajima@tokyo.rist.or.jp). (2) Japan Marine Science and Technology
Center, Yokosuka, Japan (e-mail: hashi@jamstec.go.jp) (3) The University of Tokyo,
Tokyo, Japan (e-mail: hashi@solid.eps.s.u-tokyo.ac.jp, matsuura@eps.s.u-tokyo.ac.jp).

Abstract
Code for simulation of tectonic loading process at transcurrent plate boundaries
was parallelized by MPI. Matrix assembly and inversion processes have been
largely optimized for parallel computing, and 2-way parallelization was
developed for local operations for parameter points and data/integral points.
Computations using this method on a Hitachi SR2201 with up to 128 processors
demonstrated good scalability.

1. Introduction

Boundary integral methods or boundary element methods are widely used for the
simulation of tectonic loading process at plate boundaries. In these types of methods, the
assembly and inversion of large-scale dense matrices are required, and represent the most
expensive processes in the entire computational process in terms of both computation time
and memory usage. Therefore, the full utilization of parallel computing is critical to
achieving higher resolution and to treating larger regions.

In this study, existing code[1] for the tectonic loading process simulation at
transcurrent plate boundaries has been parallelized on a Hitachi SR2201 with up to 128
processors. In the following sections we outline the original code, describe the
parallelization of the code and present results and conclusions. We adopted message
passing style parallel programming model using MPI[2] mainly due to the high efficiency,
portability and robustness.

2. Physical and Numerical Modeling

Details of the physical modeling of the original code are found in[1]. Only a brief outline
of the physical modeling process is given here. In the lithosphere-asthenosphere system
with plate boundaries, the physical process of stress accumulation at the plate boundaries

 244

is essentially governed by a coupled nonlinear system of fault slip and shear stress
equations with a constitutive relationship. In the method in[1], these coupled equations are
linearized by the Levenberg-Marquardt least-squares method[3] . Large-scale dense
coefficient matrices are provided, and linearized equation systems are solved directly by
Gaussian elimination[4]. Such methods usually require N2 order of memory storage and N3

order of operations for N unknowns. Therefore, parallel computing is critical in terms of
both CPU time and memory requirement.

3. Parallelization

3.1 Profiling
Before starting parallelization, the original code was analyzed using the profiling tool

pixie on a UNIX system. According to the profiling results, 96.5% of the entire process is
devoted to the following two processes :

Procedure seconds %
Matrix Assembly 375.4 77.2
Gaussian Elimination 93.7 19.3

This measurement was executed on a COMPAQ Alpha 21164 (500MHz) single CPU
workstation with Digital UNIX. The original code was written in FORTRAN90 and
compiled by the Digital FORTRAN compiler. In the parallelization process, the main
effort was devoted to these 2 parts; we focus on the parallelization of matrix assembly in
this paper.

3.2 Matrix Assembly
The original FORTRAN source code for matrix assembly is shown in Fig. 1 (i). There

are 3 loops in the code; the inner 2 loops (both for 1~ma) compute the coefficient matrix
A(i,j) and the right-hand side vector B(j). Unknowns X are spline coefficients and the array
size is ma. Each coefficient is defined on a parameter point [1]. The outermost loop (for
1~nada) is for the effect of data points or integral points. The number of data/integral
points is ndata, and nada is usually several times larger than ma. According to the
FORTRAN source code in Fig. 2 (i), the matrix formation process is perfectly independent
for each parameter point and data/integral point. This means that this operation can be
performed in very localized manner suitable for parallel computing. Therefore, the
parallelization of this process is rather straightforward.

3.3 Two-Way Parallelization
Fig. 1 (ii) shows the parallelized source code for the equivalent part written in

FORTRAN and MPI. The original code has been parallelized with only very small
changes apart from the addition of subsidiary parameters/arrays and MPI messages.

Each processor stores a coefficient matrix in distributed manner as A (ma,maP), where
maP=ma / P; P = Processor number. Each parameter point is renumbered in a cyclic
manner in order to avoid load imbalance during LU factorization in the parallel processing
[4][5]. The inner 2 loops are almost identical to the original code. As mentioned above, the

 245

outermost loop corresponds to the operation on each data/integral point and the number of
data points ndata is larger than that of the parameter point ma. Therefore, operation and
storage for data/operation points should also be localized in order to save memory and
computation time. In Fig. 2 (ii), the outer most loop is from 1 to ndataP (= ndata/P) and
the operation is as follows:

(1) The effect of each data/integral point is calculated locally
(2) On the call mpi_allgather (underlined), the value of sig2imat, dymat and

dydamat calculated at each integral point are delivered to each processor
(3) Parallel processes are synchronized at this MPI message and proceed to the

inner 2 loops for the local matrix
Before and after the MPI message, an entirely different space is referred for parallel
processing. This type of parallization method is very different from typical finite-element
type local operations such as that in [6]. In this study, we call this type of processing 2-way
parallelization. If there are N kinds of different parameters, N-way parallelization is
required.

 do i= 1, ndata
 call FUNCS
 sig2i= 1.d0/(sig(i)**2); dy= y(i) – ymod
 do j= 1, ma
 wt= dyda(j)*sig2i
 do k= 1, ma
 A(j,k) = A(j,k) + wt*dyda(k)
 enddo
 B(j)= B(j) + dy*wt
 enddo

 enddo
(i) Original Code

 do i0= 1, ndataP
 sig2imat= 0.d0; dymat= 0.d0; dydamat= 0.d0
 i= gfMTBL(i0)
 call FUNCS
 sig2imat(1)= 1.d0/(sig(i)**2)
 dymat(1)= y(i) - ymod
 do j= 1, ma
 dydamat(j)= dyda(j)
 enddo
 call MPI_ALLGATHER (sig2imat, dymat, dydamat…)
 do ip= 1, PETOT
 is= (ip-1)*ma
 do j= 1, ma
 wt= dydamat(is+j)*sig2imat(ip)
 do k= 1, maP
 k1= gMTBL(k)
 gA(j,k)= gA(j,k) + wt*dydamat(is+k1)
 enddo
 gB(j)= gB(j) + dymat(ip)*wt
 enddo

 enddo

 enddo
(ii) Parallel Code using MPI

Fig. 1 Parallelization of the Matrix Assembly Part

 246

4. Examples

Parallel performance was measured for various fault lengths (L) from L = 150 km to L =
600 km where relative plate velocity was set to be 5 cm/year. Depth of the fault (D) is
fixed to 45 km. Figure 2 shows history of shear stress accumulation on fault surface in
L=300 km case.

Fig.2 Result of Simulation : History of Shear Stress Accumulation (L=300 km, D= 45 km),
Shear Stress : 0~2.50 Mpa, ma=1455, ndata=13846. (a)4.70 year, (b) 7.70 year (before
earthquake), (c) 7.70 year (after earthquake), (d) 8.60 year, (e) 18.4 year, (f) 23.4 year, (g)
28.4 year, (h) 31.4 year(before earthquake) and (i) 31.4 year (after earthquake).

In this study, mesh size for the parameter points was 3 km × 3 km and that for the data /
integral points was set to be 1 km × 1 km. Therefore, number of data/integral points
(ndata) is 9 times as large as that of parameter points (ma) (Table.1). Both ndata and ma
are proportional to the fault length L. Order of the total memory requirement is ma2 and
order of the computation cost is ndata × ma2 as shown in Table.1. If the fault length is
extended from 150 km to 600 km, problem size is about 4.2 times as large as the original
case. Ratio of memory requirement is 17.5 and ratio of total computation cost is 70.0.

 247

Table 1. Computational Cost according to Problem Size

Figure 3 shows the parallel performance for various problem settings (L=150 km ~ 600 km
and PE number = 1~128) on a Hitachi SR2201. One cycle of matrix assembly and
inversion process of the nonlinear computation was extracted for measurement of
performance. Performance was calculated according to elapsed computation time
including communications and overheads. The results indicate perfect parallel
performance and superlinear improvement in computation speed when many processors
are applied.

Fig.3 Parallel Performance of Tectonic Loading Process Model at Transcurrent Plate
Boundaries on a Hitacih SR2201 up to 128 PEs for Various Problem Sizes. (Black Circles:
L=150 km, White Circles : L=300 km, Black Sqares : L=450 km (PE# : 8~128), White

 248

Triangles : L=600 km (PE# : 16~128)). Calculated according to Elapsed Time including
Communications and Overheads.

5. Conclusions and Further Study

Code for simulation of tectonic loading process at transcurrent plate boundaries was
parallelized by MPI. Matrix assembly and inversion processes have been largely optimized
for parallel computing, and 2-way parallelization was developed for local operations for
parameter points and data/integral points. Computations using this method on a Hitachi
SR2201 with up to 128 processors demonstrated good scalability. The following areas are
being considered for further development :

• Larger scale problems for real plate boundaries including subduction plate
models around Japan Islands.

• Implementation of iterative solvers with robust preconditioning
• Optimization of the single CPU performance and vectorization for the Earth

Simulator

Acknowledgments

This study is a part of the Solid Earth Platform for Large Scale Computation project
funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan
through Special Promoting Funds of Science & Technology. The author would like to
thank Professor Yasumasa Kanada (Information Technology Center, The University of
Tokyo) for helpful discussions on high performance computing.

References

[1] Hashimoto, C. and Matsu’ura, M., 1999, Physical Modeling of Tectonic Loading
Processes at Transcurrent Plate Boundaries, 1st ACES Workshop Proceedings,
183-186.

[2] Gropp, W., Lusk, E. and Skjellum, A., 1994, Using MPI : Portable Parallel
Programming with the Message-Passage Interface, MIT Press.

[3] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., 1992, Numerical
Recipes in FORTRAN, Cambridge University Press.

[4] Duff, I.S., Erisman, A.M. and Reid, J.K., 1986, Direct Methods for Sparse Matrices,
Oxford Science Publications.

[5] LINPACK Web Site http://www.netlib.org/linpack/index.html
[6] GeoFEM Web Site http://geofem.tokyo.rist.or.jp/

